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Abstract

To understand new data, we share models or interpretations with others. This paper studies

such exchanges of models in a community. The key assumption is that people adopt the inter-

pretation in their community that best explains the data, given their prior beliefs. An implica-

tion is that interpretations evolve within communities to better fit prior knowledge, potentially

making final reactions less accurate than initial reactions. When people entertain a rich set of

possible interpretations, social learning often mutes reactions to data: the exchange of models

leaves beliefs closer to priors than they were before, untethering beliefs from data. Our results

shed light on why disagreements persist as new information arrives, why ideological bubbles

need not be hermetically sealed, and the structure of meetings in organizations.
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1 Introduction

We make sense of the world together. Why is the unemployment rate lower than expected? Why
did one employee receive a promotion while another did not? Why did a political candidate under-
perform her polls? Why is the stock market skyrocketing? In response to such questions, we share
not only information but also interpretations. Unemployment numbers are lower than expected
because “economic growth is strong” or because “there was a one-time blip in manufacturing”.
One candidate received a promotion over another because “she is uniquely qualified” or “the firm
is signaling that it values a particular set of skills”. The stock market is rising because of “funda-
mentals” or “dumb money”. What is the outcome of this exchange of interpretations? Does it push
us towards the truth? How does with whom we talk affect the interpretation we come to believe?
And how might an interested party like a firm manager influence patterns of communication to
shape ultimate interpretations?

This paper presents a formal framework for thinking about such exchanges of interpretations
in a community. The basic ingredients of the model follow Schwartzstein and Sunderam (2021).
Everyone shares a common prior µ0 over states of the world ω and observes a common, public
history h. Aspects of the history are open to interpretation, meaning that people are willing to en-
tertain different interpretations of the same data. Interpretations are represented by models, which
we formalize as likelihood functions that link the history to states. In other words, interpretations
capture different ways people can use the history to update their beliefs. When people are exposed
to multiple interpretations, they adopt the one that best fits the data, fixing prior beliefs. People
have a default interpretation d, represented by likelihood function πd(h|ω), and come up with a
single alternative interpretation—their initial reaction to the data—that they adopt if it is more
compelling than their default interpretation, i.e., it better fits the data plus their prior.

In contrast to standard models where social learning is driven by the desire to learn others’ pri-
vate information (e.g., reviewed in Golub and Sadler (2016)), in our framework everyone shares the
same information but learns from others’ interpretations. People are exposed to the interpretations
of others in their community or network and settle on the one that is most compelling.1 Formally,
person i adopts the model she is exposed to m (represented by likelihood function πm(h|ω)) if

m ∈ arg max
m̃∈{d,m′i}∪Mi

Pr(h|m̃, µ0)︸ ︷︷ ︸
=
∫
πm̃(h|ω)dµ0(ω)

,

where m′i represents the model person i comes up with initially and Mi is the set of models the
person is exposed to in her network. Thus, the key role of the community in our framework is
to determine the set of models she is exposed to. Given this set of models, she picks the one

1We will use the terms network and community interchangeably.
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that maximizes the probability of the history given her prior, Pr(h|m,µ0). In Bayesian terms,
the person acts as if she has a flat prior over the models she is exposed to and then selects the
model that best fits the data and her prior, which is equivalent to selecting the model with the
highest associated posterior probability. More intuitively, this assumption loosely captures ideas
from the social sciences about what people find persuasive, including that people favor models that
(i) have high “fidelity” to the data as emphasized in work on narratives (Fisher 1985); (ii) help
with “sensemaking” as discussed in work on organizational behavior and psychology (Chater and
Loewenstein (2016)); (iii) make the past feel more predictable (Schulz and Sommerville (2006);
Gershman (2019)); and (iv) have the most “explanatory power” (Lombrozo (2016)).2

To see some key implications of this formulation, consider an example where venture capitalists
assess a cryptocurrency startup and its founder. The startup is either a success or failure, and the
founder is either good or bad (i.e., their future startups are likely to be successful or not). Venture
capitalists’ priors are that the founder is equally likely to be good or bad but is more likely to be
good if the startup is successful. For example, take the prior in the table below:

µ0 g b

s .375 .125

f .125 .375

,

where s stands for startup success, f for failure, g for the founder being good, and b for bad.
Each cell reports the prior likelihood of the row-column combination, so the prior likelihood that
the founder is good given a successful startup is Pr(g|s, µ0) = 0.75. Suppose that data comes out:
h = “the startup went public (i.e., succeeded) when the price of Bitcoin was high”. Under the true
model mT , the data should be interpreted as reducing the probability the founder is good condi-
tional on a successful startup because high Bitcoin prices suggest the founder might have just
gotten lucky (reminiscent of Bertrand and Mullainathan (2001)). Formally, πmT (h|(s, g)) = .25

and πmT (h|(s, b)) = .75, which implies that Pr(g|h,mT ) = 0.5.3 The data is closed to interpreta-
tion on whether the startup is successful—there is only one possible interpretation of the fact that
the startup went public. However, the data is open to interpretation on the founder’s quality—there
are many different ways to think about the implications for quality of high Bitcoin prices.

Following the release of data then, venture capitalists agree that the startup was successful,
but they disagree about the founder’s quality because they use different models to interpret the
data. Some initially come up with the true interpretation that the data casts doubt on the de-
gree to which going public signals quality. Others, however, think that high Bitcoin prices are a

2Recent work (e.g., Barron and Fries (2022), Kwon et al. (2022)) experimentally tests and finds support for the
assumption that people find better-fitting models more persuasive.

3This likelihood function follows from models where good founders take their startups public regardless of market
conditions, but bad founders only take their startups public when markets are hot (Loughran and Ritter (1995)).
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good signal about the founder’s quality, showing that she picks good industries: πindustry(h|(s, g))

> πindustry(h|(s, b)). Still others think that Bitcoin prices are uninformative because these kinds of
cryptocurrency startups only go public when Bitcoin prices are high, regardless of their founder’s
quality: πuninformative(h|(s, g)) = πuninformative(h|(s, b)) = 1. Assuming the population is suffi-
ciently large that roughly every interpretation is someone’s initial reaction, and that the network is
sufficiently connected that the most compelling interpretation spreads throughout the population,
we ask: which take goes viral?

Not necessarily the right one. The “uninformative” interpretation will eventually be held by
all venture capitalists. This is the best-fitting model consistent with the startup being successful,
and it implies a high probability that the founder is good: under this model m, Pr(g|h,m) = 0.75.
Social learning spreads an interpretation of the data under which venture capitalists’ posterior on
founder quality equals their prior probability conditional on a successful startup. As shown in
Schwartzstein and Sunderam (2021), models that fit well imply the data is unsurprising, which
means beliefs should not move much away from priors in response to it. In this example, venture
capitalists’ prior is that a bad founder is unlikely to have a successful startup. The model that
best fits their knowledge (i.e., their prior and the data) leads them to not move away from their
conditional prior. Thus, following social learning, venture capitalists agree on the interpretation
that the startup’s success is unsurprising because the founder was likely good. In contrast, if the
data were h = “the startup was unsuccessful, and the price of Bitcoin was high,” these same
investors would adopt a different model. In this case, they would end up holding an interpretation
implying a high probability the founder was bad because that interpretation makes the data as
unsurprising as possible.

This example illustrates three main points. First, social learning hardens reactions to data:
following the exchange of models, people are more convinced they have the right explanation
for the data in the sense of having a model with a higher value of Pr(h|m,µ0). Exposure to
others’ models helps them find ways to explain the data that they may not find on their own.
Under the model venture capitalists converge to, the probability of the data is 0.5, nearly three
times the probability under the true model (.1875). Thus, there are venture capitalists who could
have been persuaded of the true model prior to social learning but cannot be after because they
believe they have a better explanation for the data. Second, interpretations evolve in ways that often
make final interpretations less accurate than initial reactions. Before social learning, some venture
capitalists correctly account for high Bitcoin prices and hold a relatively low posterior belief that
the founder is good. However, the sharing of models leads them to interpretations resulting in the
belief that the founder is likely to be good. In other words, the marketplace of models pushes
people away from the right interpretation. This evolution of beliefs highlights a key distinction
between our formulation and models where people simply believe what they want to believe. In
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these alternative formulations, if, for example, venture capitalists prefer accounts that only good
founders have successful startups, then their initial reactions will exhibit that preference. A third
point is that social learning has a tendency to mute reactions—bringing posterior beliefs closer to
prior beliefs—by increasing the chances that people are exposed to models that explain why the
data is unsurprising and hence beliefs should not move. Put differently, the exchange of models
untethers beliefs from data that is open to interpretation. It does not have this effect on the data that
the startup was successful because that data is closed to interpretation (going public is a definition
of success for venture capitalists, as it allows them to exit their investments).

Untethering appears to be an important feature of many real-world settings. For instance,
commentators have noted the stability of political polls in recent years. Similarly, views have
been stable on issues like the health risks of Covid-19: despite wide swings in the data (e.g., case
rates, hospitalizations, and deaths), the fraction of Republicans who felt Covid was a significant
health risk in 2020 and 2021 was consistently 41-46%.4 Consistent with our model, this stability
does not mean that people do not react to news. They do react, but the impact of news tends
to fade quickly, with people returning to their previous views. In discussing reactions to news
about Covid-19, New York Times writer Charlie Warzel observed: “a story comes out about a
study/specific spreader event/ whatever & it’s like 1) immediate intense reactions followed by 2)
36 hrs of long threads by smart & not smart/qualified & not qualified people picking apart/casting
doubt & 3) usually calm consensus later in the week”.5 In our framework, this disconnect between
data that is open to interpretation and long-run beliefs is driven by the adoption of models through
social learning.

Section 2 introduces the model and basic definitions. We then turn to the impact of commu-
nity structure on interpretations and beliefs. Section 3 studies networks formed on the basis of
shared beliefs, where people who have similar initial reactions to the data exchange models. Such
networks are common—for instance, groups often form based on beliefs that one political party
governs better than others—and have likely become easier to form over time due to technology
like social media. To illustrate the intuitions that emerge, consider the example above, and sup-
pose venture capitalists who initially interpret the data as suggesting the founder is good all talk
to each other, while those whose initial interpretations suggest the founder is bad all talk to each
other. We show that social learning then generates disagreement: while they all held the same prior
beliefs, members of the “founder is good” and the “founder is bad” networks end up disagreeing.
Venture capitalists in the “founder is good” network converge on models that bring their beliefs
closer to the 75% conditional prior probability they attached to the founder being good, while those
in the “founder is bad” network converge to a probability less than 50%. As they exchange mod-

4See, e.g., Pew surveys here (link) and here (link).
5https://mobile.twitter.com/cwarzel/status/1421177475111931904
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els, members of each network become less persuadable to arguments made outside their network
(beliefs are hardened) and hold beliefs that are less tethered to the data (beliefs are muted).

We next study how shared belief networks impact beliefs across multiple issues, showing that
they can lead to polarization. If networks are formed based on one issue, the exchange of in-
terpretations leads to a divergence across networks of beliefs on a second issue. For instance, a
person in a network formed based on the shared belief that genetically-modified crops are unsafe
is more likely to end up believing that they are also bad for the environment. Thus, members of
two communities can end up disagreeing on issues that were not central to the formation of their
communities, despite the fact they are interpreting the same data. The influence of the network
on beliefs about the second issue is governed by the extent to which people connect with others
because of their views on the first issue and the correlation in prior beliefs across the two issues.

In Section 4, we show that disagreement across networks can persist even if there is communi-
cation across them. We draw a distinction between weak and strong exposure to beliefs outside a
person’s network. We say a person is weakly exposed to a belief if she is aware of a single model
that when combined with the data implies that belief. She is strongly exposed to a belief if she is
aware of all models implying that belief. We think of communication within networks as strong
exposure and communication across networks as weak exposure. Under this view, members of
a network can be aware that people outside their network have different beliefs, but they will be
unpersuaded by the interpretations of the data they know in favor of those different beliefs.

Section 5 then studies the implications of these results for how someone should manage com-
munication. We first show that providing people with a favored interpretation before social learning—
i.e., “getting in front of the news”—is valuable in our framework. It helps the communications
manager inoculate people against finding compelling models that support alternative beliefs. We
then consider situations where the manager directly influences what communication takes place,
for instance by restricting meeting attendance. We show that the communications manager faces
a tradeoff between getting people to agree on a model and promoting a specific action. To create
agreement on a model, the manager wants everyone to share interpretations, which leads to the
widespread adoption of a model suggesting that there is little to learn from the data. In contrast, if
the manager wants people to take a particular action, then she wants only models that support that
action to be shared. In this case, however, not everyone will end up with the same model, as some
people will find their initial reactions more compelling than the models that are shared.

We then spell out some applications of our results. In Section 6, we consider why disagree-
ment persists in the face of new information. Why do misconceptions survive in some groups when
people have access to high-quality information? What role do ideological bubbles play, given that
people have diverse news diets and do not appear to systematically avoid counter-attitudinal infor-
mation (Gentzkow and Shapiro (2011); Guess et al. (2018))? In financial markets, why are there
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groups of persistent optimists (“bulls”) and pessimists (“bears”) about the same stock (Diether et
al. (2002); Hong and Stein (2007))? We offer a simple explanation, complementing recent mod-
els that instead highlight the role of social media echo chambers (Bowen et al. (2021)): Within a
network or ideological bubble, people are exposed to crowdsourced models that evolve to better
and better fit data that is open to interpretation, making them less persuadable. In our framework,
bubbles do not prevent people from being exposed to the right take on an event, but they inoculate
against finding that take compelling. Vaccine skeptics are aware that many people say vaccines are
safe and know some pro-vaccine arguments (Larson et al. (2011)), but they have been exposed to a
broad diversity of arguments for why vaccines are unsafe and find some such arguments more per-
suasive. We document stylized evidence from a social-media network for stock market investors
consistent with these predictions: Investors who are bullish about a company become less bullish
in the immediate aftermath of a negative earnings surprise, but quickly revert back to being bullish;
bearish investors similarly become less bearish after a positive surprise, but quickly revert back.

Section 7 studies how firm managers should run meetings. The traditional view in economics
is that meetings enable information exchange (e.g., Dessein and Santos (2006)). In contrast, in our
framework meetings serve to help workers interpret shared information, a view that builds on a
large literature in organizational studies arguing that sensemaking is a central activity of organiza-
tions (e.g., Weick (1995)). Our results have strong implications for meeting structure. A manager
focused on keeping workers on the same page, for example if there is a coordination motive, wants
to have a very open flow of communication. When new data that is open to interpretation arrives
(e.g., someone is surprisingly denied a promotion or earnings are lower than expected), the man-
ager should allow everyone to share interpretations because they will settle on the view that there
is little to learn from the event. On the other hand, a manager focused on shifting workers’ beliefs
in response to an event, for example if she seeks to manage change, must control the flow of com-
munication. She wants to call a meeting where only interpretations supporting desired conclusions
are voiced, and she must suppress interpretations suggesting the news is consistent with the status
quo. Even with such strong control, however, the manager will not be able to get everyone on
the same page. In other words, even with optimal communications management, changes from
the status quo breed disagreement, perhaps shedding light on why organizations find it difficult to
reach shared understandings that differ from the status quo (e.g., Gibbons and Henderson (2012a)).

Finally, Section 8 illustrates the implications of our framework for different network-formation
assumptions, including networks based on shared priors and networks based on shared models.

Related Literature

There is a large literature on social learning reviewed in Golub and Sadler (2016), with influential
early contributions in economics such as Banerjee (1992), Bikhchandani et al. (1992), and Smith
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and Sørensen (2000). While much of this work assumes Bayesian updating of beliefs, important
recent contributions study naive social learning by building on the simple DeGroot (1974) model
of linear updating (Golub and Jackson (2010)) or on more psychologically microfounded updating
rules (e.g., Eyster and Rabin (2010, 2014); Enke and Zimmermann (2019); DeMarzo et al. (2003);
Gagnon-Bartsch and Rabin (2016)). This work focuses on people sharing information (e.g., how
much they enjoyed meals at a restaurant) or observing each others’ actions (e.g., seeing that a
restaurant is popular), and studies questions like whether social learning successfully aggregates
individuals’ private information in the long run. Our focus is instead on the many situations where
people share essentially the same information, and social learning primarily involves exchanging
interpretations to make sense of that information.

While frameworks featuring social learning of information tend to predict long-run consensus
and relatively effective information aggregation, in our framework the marketplace for models
naturally generates long-run disagreement and the persistence of false beliefs. As such, it may
help explain why disagreement persists in so many domains from stock prices to public health
to evolution, despite an abundance of data. Increasing connectedness tends to untether beliefs
from data that is open to interpretation by increasing the chances of being exposed to a model that
provides a compelling case that the data is unsurprising. Wrong interpretations are adopted in our
framework not because they are repeatedly heard, but because social learning selects interpretations
that compellingly fit people’s prior knowledge.

A smaller literature on social learning examines how people could leverage networks to their
advantage in spreading information. Much of this work considers how to best seed a network
with information to boost its diffusion (e.g., Akbarpour et al. (2020)). Murphy and Shleifer (2004)
present a model of the creation of social networks based on shared beliefs in the context of political
persuasion. This work considers social learning of information or beliefs rather than of models.

Closer to our work, recent presidential addresses in finance, such as Shiller (2017) and Hir-
shleifer (2020), have called for studying the social transmission of narratives in economics and
finance.6 These addresses, as well as a related book (Shiller (2020)), have laid the groundwork
for this study by providing vivid illustrations of the importance of socially-emergent narratives as
drivers of economic and financial events. They also sketch models of narrative transmission that
liken the spread of narratives to the spread of viruses. Bénabou et al. (2018) model the spread of
moral narratives (e.g., “thou shall not do this because”) by strategic actors, while Bursztyn et al.
(2023) and Bursztyn et al. (2022) argue that providing rationales and narratives importantly influ-
ences people’s willingness to voice certain beliefs. Our work adds to this line of study by formally
modeling social forces that shape the narratives themselves and highlighting that good explanatory

6While not all narratives are models and vice-versa, they are closely related and we sometimes interchangeably use
the terms narratives, stories, and models.
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power helps narratives “go viral”.
We build on our earlier work on model persuasion (Schwartzstein and Sunderam (2021)), which

itself built on behavioral models of persuasion based on coarse or associational thinking (e.g.,
Mullainathan et al. (2008)).7 Froeb et al. (2016) present an earlier related model in the context
of studying adversarial decision making in law, Levy and Razin (2020) present a related model
speaking to the problem of combining expert forecasts, Aina (2021) builds on the model persua-
sion framework by considering what happens when persuaders need to commit to models before
seeing all the data, and Ichihashi and Meng (2021) considers the interaction between Bayesian
persuasion (Kamenica and Gentzkow (2011)) and model persuasion. Other recent work (Eliaz and
Spiegler (2020); Bénabou et al. (2018); Yang (2022); Eliaz et al. (2022)) take somewhat differ-
ent approaches to formalizing models or narratives and what makes them persuasive. For example,
Eliaz and Spiegler (2020) assume that people favor “hopeful narratives”, Eliaz et al. (2022) assume
that narratives emerge competitively to increase political mobilization, and Yang (2022) assumes
that people favor “decisive models”. A growing empirical and experimental literature measures
people’s models or narratives, as well as how they influence expectations and decisions (e.g., Bar-
ron and Fries (2022); Andre et al. (2022); Flynn and Sastry (2022); Hüning et al. (2022)). We add
to this work by formalizing how social learning influences which models emerge and persist.

2 Model

2.1 Setup

The basic setup follows Schwartzstein and Sunderam (2021). Broadly, individual agents take the
following steps in interpreting data. All agents share a common default model for interpreting data,
and in addition each agent comes up with a model of their own. Prior to social learning, each agent
selects from these two models the one that best explains the data. Social learning then exposes
each agent to all models held by other agents in her social networks. After social learning, each
agent adopts the model that best explains the data from the set of models she has been exposed to:
the default, the model she comes up with on their own, and the models others in her social network
have come up with.

Formally, there are a continuum of agents i ∈ [0, 1] who hold beliefs µi over states of the world
ω in finite set Ω.8 Agent i takes an action a from compact set A to maximize the expectation

7Our framework also connects to the literature on learning under misspecified models (e.g., Esponda and Pouzo
(2016); Acemoglu et al. (2016); Heidhues et al. (2018); Montiel Olea et al. (2022); Mailath and Samuelson (2020);
Haghtalab et al. (2021)), which sometimes feature agents who statistically test their models and abandon them in favor
of alternatives which fit better. Examples include Fudenberg and Kreps (1994); Hong et al. (2007); Gagnon-Bartsch
et al. (2021); Fudenberg and Lanzani (2021); Ba (2021).

8In examples we sometimes relax the assumption that Ω is finite.
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under µi of Ui(a, ω). In the baseline setup, agents share a common prior µ0 ∈ int(∆(Ω)) over
Ω and observe a public history of past outcomes, h, drawn from finite outcome space H . Agents
can end up with different posteriors if they use different models to interpret this history. Given
state ω, the likelihood of h is given by π(·|ω). The true model mT is the likelihood function
{πmT (·|ω)}ω∈Ω = {π(·|ω)}ω∈Ω. We assume that every history h ∈ H has positive probability
given the prior and true model.

Agents do not know the true model. A given agent updates her beliefs based on either (i) the
default model {πd(·|ω)}ω∈Ω,9 (ii) the model m′i that she generates herself to explain the history,
where m′i is taken from compact set M and indexes a likelihood function

{
πm′i(·|ω)

}
ω∈Ω

, or (iii)
a model she learns from someone in her social network, where we let Mi ⊆ M denote the set of
models proposed by someone in i’s social network.

Given the history and the set of models the agent is exposed to, she adopts the one that best
explains the history. Formally, let µ(h, m̃) denote the posterior distribution over Ω given h and
model m̃ ∈ M ∪ {d}, as derived by Bayes’ rule. We assume the receiver adopts the model m and
hence posterior µ(h,m) if

m ∈ arg max
m̃∈{d,m′i}∪Mi

Pr(h|m̃, µ0)︸ ︷︷ ︸
=
∫
πm̃(h|ω)dµ0(ω)

.

That is, the person picks the model she is exposed to that best fits the data. Upon adopting a model
m̃, the person uses Bayes’ rule to form posterior µ(h, m̃) and takes an action that maximizes her
expected utility given that posterior belief: a(h, m̃) ∈ arg maxa∈A Eµ(h,m̃)[Ui(a, ω)].

To close the baseline model, we need to specify the model a person generates herself. Let
M̄(h, µ0, d,M) = {m ∈M : Pr(h|m,µ0) ≥ Pr(h|d, µ0)} denote the set of models in M that
explain the history as well as the person’s default interpretation given her prior over states. Assume
that measure δ of the population generates the default model and measure (1 − δ) generates a
model in M̄(h, µ0, d,M).10 Further assume that population is large enough that, for each model
m ∈ M̄(h, µ0, d,M), someone in the population generates that model herself.

In the typical case, we set the default interpretation to be the true model, d = mT and
focus on situations where data are open to interpretation—i.e., where people are in fact shar-
ing interpretations of data. To discipline the analysis, we also typically let M be the set of
all possible models Ma: for any likelihood function {π̃(·|ω)}ω∈Ω there is an m ∈ Ma with
{πm(·|ω)}ω∈Ω = {π̃(·|ω)}ω∈Ω. We refer to this as the case where people are maximally open

9The default can be a function of h. We suppress the dependence of d on h when it does not cause confusion.
10Alternatively, we could endogenize δ by assuming that people sometimes generate models outside of

M̄(h, µ0, d,M) in which case they stick with the default model. This would suggest that δ is larger when the de-
fault does a good job explaining the data h. While this change would influence the distribution of beliefs prior to
social learning, it would not influence the distribution of beliefs following social learning.
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to persuasion. We simply write M̄(h, µ0) as shorthand for M̄(h, µ0,m
T ,Ma).11

2.2 Discussion of Model Assumptions

The building blocks of the model come from Schwartzstein and Sunderam (2021), and we refer
to that paper for a detailed discussion of the basic assumptions. We depart from that paper in a
few crucial ways. First, we allow some receivers by themselves to generate a model other than the
default. In the notation of our current framework, our previous paper assumes δ = 1 (receivers
stick with the default before being exposed to persuasion), while the analysis in this paper focuses
on the case where δ < 1. For many topics, it is plausible that some people generate an initial
interpretation of the data, prior to sharing interpretations with others. Many of us have gut reactions
about why the stock market moved yesterday, who is responsible for the storming of a government
building, or what the latest school shooting implies about the merits of gun control. These gut
reactions may be constructed spontaneously in response to the data and differ across people (see,
e.g., Andre et al. (2022) for evidence of heterogeneity in households’ and experts’ models of the
causes of inflation). Crucially, however, we assume that a given person does not come up with all
models she is willing to entertain, so she is influenced by the set of models she is exposed to.

Second, the focus of this paper’s analysis is on the social exchange of models, not on the
behavior of a strategic persuader who attempts to influence the beliefs and behavior of audience
members. The role of the network in our framework is simply to influence the set of models a
person is exposed to. By taking as primitive the set of models a given person i is exposed to, Mi,
our framework accommodates a variety of network structures, including both directed networks,
where the flow of communication goes one way, and undirected networks, where it goes two ways.

Third, implicit in the idea that a person is exposed only to the models within her network is an
assumption that she does not actively seek out the models proposed by members of other networks.
One way of thinking about this assumption is that people exhibit a sort of out-group homogeneity
bias (e.g., Quattrone and Jones (1980); Bursztyn and Yang (2023)), thinking there is not much
reason to investigate the models in other networks because they are “all the same”. A person who
favors gun control may be aware of some arguments for why shootings suggest weaker gun control
(e.g., “we need more guns in the hands of good guys”) and may think once she has heard one such
argument she has heard them all, perhaps underappreciating the diversity of these arguments.

11All our results and intuitions stated for the case of M = Ma continue to hold if we instead make the following
assumption on M : For every belief µ̃ that is a posterior for some model in Ma given data h, prior µ0, and default d,
M includes the best-fitting model inducing that posterior as well as one worse-fitting model inducing that posterior.
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2.3 Examples

Example 1 (Interpreting data about startup characteristics). We now sketch two brief examples,
which we will return to throughout the paper.

The first involves investing. Consider a community of venture capitalists trying to predict the
success of a startup in a new sector (e.g., generative AI) based on the history of past startups and
their characteristics. The characteristics of startup j are its profits (x1j), management team experi-
ence (x2j), and an individuating characteristic (x3j)—a characteristic that is unique to each startup.
The history of past startups is h = {(x1j, x2j, x3j, yj)}j where yj = 1 if startup j succeeded and
yj = 0 if it failed. Figure 1a shows an example history. Each dot represents a previous startup, with
profit plotted on the horizontal axis and team experience plotted on the vertical axis. The individu-
ating characteristics are not pictured. A dot is filled in if the startup was successful and is unfilled
if it failed. Venture capitalists start with a prior that a given startup’s probability of success, θ, is
uniformly distributed on [0, 1] and dogmatically believe that (profit) x (experience) characteristics
are uniformly distributed in [0, 1] × [0, 1]. They then use the history to make predictions about a
new startup k’s success probability as a function of its characteristics.

We assume there are four types of models in the model spaceM . First, the default model is that
all startups in the new sector have the same success probability regardless of their characteristics.
Second, there are models that are cutoff rules in profit: all startups with profit below the cutoff
share the same success probability and all startups with profit above the cutoff share the same
success probability.12 For instance, the vertical green line in Figure 1b depicts the model where
the cutoff is the 25th percentile of profits. Third, there are models that are analogous cutoff rules
in team experience. For instance, the horizontal red line in Figure 1c depicts the model where the
cutoff is the 25th percentile of experience. Fourth, there is a model positing that neither profits
nor experience matter. Instead, each startup’s outcome is due to its individuating characteristics;
in other words, each startup had a unique feature that perfectly determined success or failure. Note
that this model perfectly explains each data point.13

Prior to social learning, venture capitalists consider the default and one other model randomly
selected from the other three model types. As shown in Figure 1d, venture capitalists will have a
variety of different interpretations, and thus different beliefs, at this point. In the figure, we depict
for simplicity the case where the cutoffs considered are at the 25th, 50th, and 75th percentiles of
each dimension. All fit better than the default.

Example 2 (Interpreting data about policy issues). Our second example involves interpreting data
about a binary state space, Ω = {l, r}. Unlike the first example, here the space of models is

12Formally, success probabilities below and above the cutoff are independently drawn from the uniform distribution.
13Formally, under the model mind, Pr(y|x3,m

ind, µ0) = 1 for y ≡ (yj)j and x3 ≡ (x3j)j .
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Figure 1: Predicting the success of a startup

unrestricted. The prior over states is µ0(l) = 1/2. Further assume people are maximally open to
persuasion, M = Ma, given the data h and the default model is the true model, d = mT . People
can take three possible actions, a ∈ {L,M,R} . Payoffs Ui are such that the optimal action is
a = L if µ(l) ≥ .75, a = M if µ(l) ∈ (.25, .75), and a = R if µ(l) ≤ .25.

This example can capture optimal public-policy choices. In state ω = l, a Democrat would
make a better US president, and in state ω = r a Republican would make a better US president.
Actions correspond to voting Democrat (a = L), abstaining (a = M ), and voting Republican
(a = R). Alternatively, one can think of the states as corresponding to whether some left- or right-
leaning policy (e.g., involving gun control, climate change, pandemic policy) would be effective,
and the actions as corresponding to supporting such policies (a = L, R) or the status quo (a = M ).
The example can also capture choices of firms, for instance to cut costs, grow, or stay the course.

We will sometimes extend this example to cases where people may use the same data to update
beliefs about a variety of issues. For instance, in the introduction, people updated both about
whether the startup was successful and the founder’s quality. Similarly, people may interpret data
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about genetically-modified crops using models that have implications for both their safety and
impact on the environment (e.g., how their adoption influences pesticide use). To accommodate
such examples, let Ω = Ω1 × Ω2. We will consider how network members’ beliefs over Ω1 (e.g.,
what the data implies about the environmental impact of genetically-modified crops) spill over to
influence beliefs over Ω2 (e.g., what the data implies about their safety).

2.4 Basic Definitions

Prior to social learning, a person adopts the model

m′ ∈ arg max
m̃∈{d,m′i}

Pr(h|m̃, µ0)

and holds beliefs µ(h,m′). Following social learning, the person adopts the model

m ∈ arg max
m̃∈{d,m′i}∪Mi

Pr(h|m̃, µ0)

and holds beliefs µ(h,m) when such maximizers exist—assume throughout the paper that Mi is
indeed such that such maximizers exist. As shorthand, write µ′i (m′i) as person i’s beliefs (adopted
model) prior to social learning and µi (mi) as her beliefs (adopted model) following social learning.

We say that social learning hardens a person’s reaction to data when she can better explain the
data following social learning than before: that is, when Pr(h|mi, µ0) ≥ Pr(h|m′i, µ0). When so-
cial learning does not harden the person’s reaction, we say it softens her reaction. We say that social
learning mutes a person’s reaction to data when it moves her beliefs closer to her prior. Formally,
following Schwartzstein and Sunderam (2021), let Movement(µ̃;µ0) ≡ maxω∈Ω µ̃(ω)/µ0(ω) be
a measure of the change in beliefs from prior µ0 to posterior µ̃. Social learning mutes reactions
to the data when Movement(µi;µ0) ≤ Movement(µ′i;µ0). When social learning does not mute a
person’s reaction to data, we say it intensifies her reaction. Note that these terms compare final
beliefs to people’s initial reactions to data before social learning, not to their prior.

A simple observation is that our assumptions imply that social learning must harden reactions
to data: being exposed to more explanations of the data enables the person to better explain the
data. Social learning leads a person to become more convinced she understands why the market
moved as it did, why an unexpected political event occurred, or the daily movement in pandemic
deaths. Following social learning, any event seems more explainable.

3 Social Exchange of Models
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3.1 Initial Reactions

We start by briefly describing people’s initial reactions before social learning. There are two key
points. First, before social learning, people have a variety of reactions to the data. Second, there
are constraints on initial reactions, which in turn imply constraints on final beliefs.

Let ∆̄(h, µ0, d,M) =
{
µ ∈ ∆(Ω) : µ = µ(h,m) for some m ∈ M̄(h, µ0, d,M)

}
denote the

set of initial beliefs in reaction to the data. By assumption, fraction δ of the population sticks with
the default and holds beliefs µ(h, d) and fraction (1− δ) holds beliefs in ∆̄(h, µ0, d,M).

Proposition 1. The set of initial beliefs in reaction to the data is a subset of

¯̄∆(h, µ0, d,M) =

{
µ ∈ ∆(Ω) : µ(ω) ≤ µ0(ω)

Pr(h|d, µ0)
∀ ω ∈ Ω

}
.

Further, when people are maximally open to persuasion given the data, M = Ma , we have

∆̄(h, µ0, d,M) = ¯̄∆(h, µ0, d,M).

Proof. All proofs are in Appendix A.

Proposition 1, which is essentially a restatement of Proposition 1 in Schwartzstein and Sun-
deram (2021), characterizes the set of initial reactions to the data.14 From this result, it is immedi-
ate that the set of initial reactions is constrained by prior beliefs, µ0(ω), as well as the ability of the
default to explain the data given those prior beliefs, Pr(h|d, µ0). Intuitively, the better the default
model fits the data, the harder it is for an initial reaction to fit the data even better. And the more
unlikely a state under peoples’ prior, the less likely it is that their beliefs following their initial
reaction put a lot of weight on that state. If the data is maximally open to interpretation, sticking
with prior beliefs is always an initial reaction to the data and the range of initial reactions is greater
when people are more surprised by the data, i.e., when Pr(h|d, µ0) is lower.15

To illustrate, return to the cryptocurrency example from the introduction. Proposition 1 implies
that no venture capitalist initially reacts to h = “the startup went public (i.e., succeeded) when the
price of Bitcoin was high” by concluding that the founder is bad for sure. The default interpretation

14To derive the distribution over initial reactions, we need to additionally specify the distribution of models people
initially come up with. Many of our results on beliefs after social learning are independent of this distribution.

15The range of initial reactions will be smaller when prior beliefs are more informed, for example because they
reflect a long history of closed-to-interpretation data (see Proposition 2 in Schwartzstein and Sunderam (2021)).
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fits the data well enough that this alternative interpretation is not compelling. Formally,

∆̄(h, µ0, d,M
a) =

{
µ ∈ ∆(Ω) : µ(s, g) + µ(s, b) = 1 and µ(ω) ≤ µ0(ω)

Pr(h|d, µ0)
∀ ω ∈ Ω

}
= {µ ∈ ∆(Ω) : µ(s, g) + µ(s, b) = 1 and µ(s, b) ≤ 2/3 and µ(s, g) ≤ 1} ,

where the equality follows from µ0(s, g)/Pr(h|d, µ0) = .375/.1875 = 2 and µ0(s, b)/Pr(h|d, µ0) =

.125/.1875 = 2/3. Given h, the highest probability venture capitalists could initially attach to the
founder being bad given that the startup succeeded is 2/3. Since the set of beliefs following social
learning are a subset of initial beliefs, reactions to the data following social learning are subject to
the same constraints in Proposition 1 as initial reactions. The next section begins a more in-depth
analysis of how social learning shapes beliefs.

3.2 Shared Belief Networks

In our framework, the network determines the set of models that people are exposed to. Network
formation therefore plays a crucial role in determining ultimate beliefs. Throughout the paper, we
will frequently analyze the case where networks are formed on the basis of shared beliefs. Such
networks are quite common (e.g., McPherson et al. (2001)). For instance, networks are formed
based on beliefs that one political party typically governs better than others, that vaccines are
harmful, and even whether a specific stock is likely to rise (Cookson et al. (2022)). Moreover,
technology like social media has made it easier for such networks to form and for members of
these networks to exchange interpretations. Of course, not all networks are formed on the basis of
shared beliefs. People may connect with others for other reasons, for instance because they live
in the same physical neighborhood or because they share the same models. We briefly explore
implications of alternative network structures in Section 8.

The key feature of a shared-belief network is that the beliefs a person holds prior to talking to
others influences who she talks to. Formally, consider a partition S over the set of beliefs ∆(Ω),
where we denote s(µ) as the element in S that belief µ ∈ ∆(Ω) belongs in. In a shared-belief
network, a person i exchanges models with another person j if and only if their initial beliefs are
similar, in the sense that they fall in the same element of S.

Definition 1. In a shared-belief network, Mi =
{
m ∈ M̄(h, µ0, d,M) : µ(h,m) ∈ s(µ(h,m′i))

}
for every person i.

Given our assumption of common priors, this definition, taken literally, says that a shared-
belief network forms based on a common reaction to a specific event. For example, a shared-
belief network could form among people who react similarly to a shooting in their beliefs on the
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need for gun control. While this literal interpretation is a reasonable approximation of reality for
certain events, such as the earnings announcements we consider in Section 6, in many instances
networks based on shared beliefs are probably formed based on common reactions to a broader set
of events. For example, people who lean left in their interpretations might share views on the most
recent event, even if their initial views on that most recent event are quite different. In such cases,
a broader interpretation of the setup is appropriate—shared-belief networks are formed among
people who initially hold similar beliefs about some question of interest, whether or not these
similar beliefs arise literally from having a common initial reaction to the most recent event.16

As an illustration, return to the startup characteristics example (Ex. 1), and suppose venture
capitalists are in shared-belief networks. Specifically, they share interpretations with others who
have similar initial reactions to the data. Optimists who believe the data suggest that the average
startup is likely to be successful talk to each other; pessimists who believe the data suggest that
the average startup is likely to be unsuccessful talk to each other; and moderates who believe that
success of the average startup is 50-50 talk to each other. This network structure may emerge be-
cause people with different initial reactions have different objectives going forward. For instance,
optimists think they are likely to invest and want to figure out the characteristics that matter most
for success, while pessimists want to figure out the most compelling way to explain to their clients
why they are not investing.
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Figure 2: Evolution of Beliefs Across Shared-Belief Networks Surrounding Startup Success

Social learning will lead beliefs to converge within each network to the model within that
network that best fits the data. For instance, consider the optimists. Two models lead to optimistic

16We will more formally capture this idea in briefly studying dynamics in Section 8.
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interpretations of the data: one where the cutoff is at the 25th percentile of experience and one
where the cutoff is at the 25th percentile of profits. The former fits the data almost ten times
better than the latter. This can be seen in by comparing Figures 1b and 1c. The experience-based
model in Figure 1c more effectively separates successes from failures than does the profit-based
model in Figure 1b.17 Thus, after social learning, all optimists adopt the experience-based model,
depicted by thick-red horizontal line in Figure 2b. Given the data and this adopted model, simple
application of the standard beta-binomial updating formula tells us that members of the optimist
network forecast average startup success to be 3/4 · ((7 + 1)/(9 + 2)) + 1/4 · (1/(5 + 2)) ≈ .58.
Essentially, they believe the best way to explain the data is that failure is relatively rare—only the
startups with the least experienced management teams fail.

Members of the pessimist network go through a similar evolution. There are two models that
lead to pessimistic interpretations: one with a cutoff at the 75th percentile of experience and one
with a cutoff at the 75th percentile of profits. In this case, the profit-based model fits approximately
ten times better than the experienced-based model, so pessimists converge to the model depicted
by the thick-green vertical line in Figure 2b. Given the data, members in the pessimist network
forecast average startup success to be 3/4 · ((2 + 1)/(9 + 2)) + 1/4 · ((5 + 1)/(5 + 2)) ≈ .42,
disagreeing strongly with the members of the optimists network.

Finally, consider the neutral network. Prior to social learning, the two models in the neutral
network are the default model (that the success probability is the same regardless of characteristics)
and the model where the success or failure of each previous startup was inevitable given individ-
uating characteristics. The latter model fits the data perfectly, so members of the neutral network
converge to it, while continuing to forecast average startup success to be .5.

The example highlights how interpretations evolve differently across networks. Members of
different networks end up not only with different final beliefs about startup success probabilities,
but also disagreeing about the characteristics that matter for success. In the optimist network, some
initially believe experience matters, while others initially believe profit matters. Yet all come to
believe that startup success is predicted by experience and not profit. Members of the pessimist
network similarly start out disagreeing, but instead come to believe that startup success is predicted
by profits and not experience. In the neutral network, everyone comes to believe that success is
unpredictable ex ante because individuating characteristics are all that matter.

17Formally, the likelihood of the data under the experience-based model is proportional to (
∫ 1

0
(1−θ)5dθ)·(

∫ 1

0
θ7(1−

θ)2dθ) ≈ .00046, while the likelihood of the data under the profit-based model is proportional to (
∫ 1

0
(1 − θ)3dθ) ·

(
∫ 1

0
θ7(1− θ)4) ≈ .000063.
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3.3 Shared Belief Networks When People are Maximally Open

We can say more about the evolution of beliefs if people are maximally open to persuasion. We
first recall a lemma from Schwartzstein and Sunderam (2021).

Lemma 1 (Schwartzstein and Sunderam (2021)). Fix history h and let

Fit(µ̃;h, µ0) ≡ max
m

Pr(h|m,µ0) such that µ(h,m) = µ̃

be the maximal fit of any model that induces posterior µ̃ given the history h and a person’s prior

µ0. Then

Fit(µ̃;h, µ0) = 1/Movement(µ̃;µ0),

where Movement(µ̃;µ0) ≡ maxω∈Ω µ̃(ω)/µ0(ω) is the movement to µ̃ from µ0.

Intuitively, fit and movement are inversely related because models that fit the history well say
it is unsurprising in hindsight, which then implies that beliefs should move little. So, for any given
belief µ, the maximal fit of a model inducing that belief is greater the closer this belief is to µ0.

Proposition 2. Suppose everyone is in a shared-belief network and is maximally open to persua-

sion, M = Ma. Then social learning mutes every person’s reaction to the data: for every person

i, Movement(µi;µ0) ≤ Movement(µ′i;µ0). In fact, social learning leads everyone’s final beliefs to

be in the set of initial beliefs within the network that are closest to the prior: for every person i,

µi ∈ arg minµ∈s(µ′i) Movement(µ;µ0).

This result says that if a person only exchanges models with others who react similarly to
data, they end up with the belief that reacts least to the data within their network. For instance, a
school shooting might initially lead people to support a change in gun-control policies, but they
will eventually favor interpretations that say we did not learn much from the shooting. There is
empirical evidence of exactly such dynamics. Following mass shootings, Twitter users who are
initially against gun control temporarily become more open to the idea. However, as narratives
evolve and spread in the weeks following a mass shooting, these Twitter users slowly revert back
towards their original beliefs (Lin and Chung (2020)).

To further illustrate Proposition 2, suppose that in the public-policy example (Ex. 2), µ0(l) =

1/2 and the data is surprising—i.e., under the default model, it has very low probability. For
example, suppose h = “a natural disaster struck and GDP growth this quarter was low.” Suppose
further that shared-belief networks are formed based on views of the optimal action: Everyone
with an initial reaction supporting a right-leaning action like a tax cut is in one network (µ′j(r) ∈
[k, 1]) for k ∈ (.5, 1)), everyone with an initial reaction supporting the neutral action is in another
(µ′j(r) ∈ (1 − k, k)), and everyone with an initial reaction supporting a left-leaning action like
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Figure 3: Evolution of Beliefs Across Shared-Belief Networks Surrounding a Single Policy Issue
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stimulus checks is in the final network (µ′j(r) ∈ [0, 1−k]). The variable k parameterizes the degree
to which people form shared-belief networks based on the intensity of their views on the issue. It
is larger when people connect with others based on their views about the issue (e.g., through social
media) and smaller when people connect with others for other reasons (e.g., because they live in
the same physical neighborhood).

Proposition 2 says that everyone in a given network ends up at the belief that is closest to the
prior within her network (Figure 3 illustrates for k = .75). For example, someone whose initial
reaction to the data moves her belief from µ0(r) = .5 to µ′(r) = .9 will exchange models with
others whose initial reactions support the right-leaning action (pictured in red in the figure), which
mutes her reaction to µ(r) = k. Polarization in views across the right- and left-leaning networks
equals k − (1− k) = 2k − 1: it is increasing in the extent to which people talk to others based on
their views along the issue. In other words, the network formation process (indexed by k) drives
polarization across networks, while the exchange of models drives the homogeneity of beliefs
within the network.

3.4 Multiple Issues

It is of course not always the case that new networks form around every issue, even in the age of
social media. In many instances, a network formed on one issue becomes a venue for discussing a
second issue. For instance, a group formed based on a shared skepticism of vaccine safety might
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also discuss the merits of public education. Or, a group formed on the basis of a shared support
for environmental regulation might also discuss the safety of genetically-modified foods. In this
subsection, we consider how networks formed on shared beliefs about one issue influence beliefs
on a second issue. We show that Proposition 2 has implications for cross-issue polarization.

Formally, consider an extension of the policy example where there are two issues: Ω = Ω1×Ω2

and describe marginal beliefs over Ωj by µj . For concreteness, let Ω1 = {l, r} be whether a left-
or right-leaning candidate governs better and Ω2 = {n, y} be whether the economy will grow
next quarter (y) or not (n). Networks are formed based on beliefs over {l, r} but not {n, y}: s(µ)

depends only on µ1. Suppose people with initial beliefs µ1′
i (l) ≥ .75 are in one network (the

“left-leaning network”), those with initial beliefs µ1′
i (l) ∈ (.25, .75) are in another (the “centrist

network”), and those with initial beliefs µ1′
i (l) ≤ .25 are in another (the “right-leaning network”).

Even though beliefs over the second issue do not influence network formation, final beliefs over
that issue differ across networks when prior beliefs are correlated across the issues. For example,
supposing that the left-wing party is currently in power, people might believe that economic growth
is positively correlated with left-leaning parties (and candidates) governing better:

µ0 n y

l .125 .375

r .375 .125

.

Continue to assume that the data is that a there was a natural disaster and GDP growth was low this
quarter. Under the default interpretation, these data are uninformative about whether the left- or
right-leaning candidate is better at governing. Low growth caused by a natural disaster is different
from a standard recession.

In this case, a movement-minimizing belief among members of the left-leaning network is

µleft-leaning n y

l .75 · .25 = .1875 .75 · .75 = .5625

r .25 · .75 = .1875 .25 · .25 = .0625

,

a movement-minimizing belief among members of the centrist network is the prior, and a movement-
minimizing belief among members of the right-leaning network is:

µright-leaning n y

l .25 · .25 = .0625 .25 · .75 = .1875

r .75 · .75 = .5625 .75 · .25 = .1875

.

By Proposition 2, these three beliefs are potential final beliefs shared by members of the three
respective networks. Members of the left-leaning network in this example view the data as sug-
gesting a high likelihood that the economy will grow next quarter: µleft-leaning(y) = .5625+ .0625 =
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.625. In contrast, members of the right-leaning network view this same data as suggesting a low
likelihood: µright-leaning(y) = .1875 + .1875 = .375. The right-leaning network’s interpretation is
that a natural disaster and low current growth are likely if the right-leaning candidate was better
at governing (e.g., because the left-leaning party in power is incompetent). The left-leaning net-
work’s interpretation is that the data is likely if the left-leaning candidate is better at governing
(e.g., because GDP growth could have been much worse in the face of a natural disaster).18

Sharing models that suggest the left-leaning candidate is better at governing leads members
of the network to also interpret the data as suggesting that the economy is likely to grow next
quarter. In other words, the belief that the economy will grow becomes a “spurious implication”
of the belief that the left-leaning candidate governs better. Conversely, sharing models that sug-
gest the right-leaning candidate is better at governing leads members of the network to interpret
the same data as suggesting that the economy is unlikely to grow. Thus, shared belief networks
lead to polarization and disagreement on issues beyond the issue driving network formation. This
intuition may help explain the sharp disagreement between Democrats and Republicans about eco-
nomic conditions that has emerged over the last 10 years. For instance, Democrats report much
higher consumer confidence before the 2016 election and after the 2020 election (when Democrats
were president), while Republicans report much higher confidence between the two elections.19

This pattern emerges in our framework if people discuss economic data within networks primarily
formed based on partisan affiliation.

We can put additional structure on when we expect such cross-issue polarization to be most
severe by generalizing this example slightly. Suppose that Ω1and Ω2 are binary, with priors given
by the following table:

µ0 n y

l a b

r b a

.

Suppose further that µ0(l) = .5 and, for k ≥ µ0(l), shared belief networks are formed based on
whether µ(l) ≥ k, µ(l) ∈ (1 − k, k), µ(l) ≤ 1 − k. Call the left-leaning network the one where
people hold beliefs that µ(l) ≥ k, etc. Refer to this generalization of the multiple-issues policy
example as the multiple issues setup.

18More formally, members of the left-leaning network in this example adopt the model: πleft-leaning
m (h|l, n) =

πleft-leaning
m (h|l, y) = 1 and πleft-leaning

m (h|r, n) = πleft-leaning
m (h|r, y) = 1/3. Members of the centrist network

adopt the model: πcentrist
m (h|l, n) = πcentrist

m (h|l, y) = 1 and πcentrist
m (h|r, n) = πcentrist

m (h|r, y) = 1. Members of
the right-leaning network in the example adopt the model: πright-leaning

m (h|l, n) = πright-leaning
m (h|l, y) = 1/3 and

πright-leaning
m (h|r, n) = πright-leaning

m (h|r, y) = 1. While we will see below in Corollary 1 that there are potentially many
beliefs represented in each network, a natural refinement selects this model. Letting µleft-leaning be a belief that min-
imizes maxω∈Ω µ0(ω)/µ̃(ω) among beliefs µ̃ in arg minµ∈s(µ′

i)
Movement(µ;µ0) and letting µright-leaningbe defined

analogously, then the particular models described at the beginning of this footnote are selected.
19See evidence on consumer confidence from the Michigan Survey of Consumers at this link.
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Corollary 1. In the multiple issues setup, shared-belief networks of intensity k ≥ µ0(l)/(µ0(l) +

µ0(l, y)) formed based on views on issue l versus r spill over to influence views of issue y versus n:

The simple average between the lowest and highest potential values of µleft-leaning
i (y)−µright-leaning

j (y)

across people i (in the left-leaning network) and j (in the right-leaning network) equals1
2
× k × (µ0(y|l)− µ0(y|r) + 3)− 1 if k < µ0(l)

µ0(l)+µ0(r,y)

k × (µ0(y|l)− µ0(y|r)) if k ≥ µ0(l)
µ0(l)+µ0(r,y)

. (1)

Moreover, for k ≥ 1
2×µ0(y|l) , the lower bound of µleft-leaning

i (y) − µright-leaning
j (y) is greater than 0

when µ0(y|l) > µ0(y|r).

Corollary 1 (of Proposition 2) identifies two factors that influence belief polarization in views
about y versus n across members of the left-leaning and right-leaning networks, given by Equation
(1). First, polarization is increasing in the intensity k with which networks are formed based on
shared beliefs along issue l versus r—e.g., the extent to which people connect with others because
of their views about that issue. Second, such polarization is increasing in the degree (µ0(y|l) −
µ0(y|r)) to which issue y versus n is prior-connected to issue l versus r. For instance, since
views on sports are not naturally connected with politics (i.e., µ0(y|l) ≈ µ0(y|r)), views on which
teams are most promising do not become more correlated with political leanings through social
learning.20 While there are potentially a range of beliefs within each network, for k sufficiently
large and µ0(y|l) > µ0(y|r), every member of the left-leaning network is more optimistic about y
than all members of the right-leaning network.

These results illustrate how networks based on one issue shape views on connected issues,
perhaps shedding light on the so-called “polarization of reality” documented by Alesina et al.
(2020). They show how the political left and right differ in their perceptions of, for example,
the probability of upward social mobility. Our model suggests that such polarization is likely to
occur along issues that the electorate believes are connected to whether the left or right governs
better, as is naturally the case with social mobility since it connects to policy. Insofar as social
media facilitates the formation of networks based on shared beliefs (increasing k), our model also
suggests that it may play a role in increasing the polarization of reality along such issues. However,
our model also suggests that such polarization is unlikely to occur with issues that the electorate
believes are not connected to whether the left or right is likely to govern better (e.g., sports).

20For µ0(y|l) ≈ µ0(y|r), µ0(l, y) = a ≈ b = µ0(r, y), so the simple average between the lowest and highest
potential values of µleft-leaning

i (y) − µright-leaning
j (y) across people i (in the left-leaning network) and j (in the right-

leaning network) is given by the second line of Equation (1), given the assumption that k ≥ µ0(l)/(µ0(l) + µ0(l, y)).
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4 Making People More Connected

Can inaccurate beliefs and disagreement persist as people become more connected? This section
analyzes this question and presents two main results. First, we show that differences in beliefs can
persist when members of one network only hear some arguments made by members of another
network. In other words, ideological bubbles need not be hermetically sealed. So long as only
some arguments are transmitted across networks, differences in beliefs can persist. Second, we
show that, in contrast to standard information-based theories of social learning, larger networks do
not generally lead to more accurate beliefs.

4.1 Communication Across Networks

We first consider the impact of two different types of communication across networks. Person i is
weakly exposed to belief µ̃ if the set of models she is exposed to expands fromMi toMi∪{m(µ̃)},
where m(µ̃) is a specific model that supports belief µ̃. On the other hand, a person is strongly

exposed to belief µ̃ if the set of models she is exposed to expands from Mi to Mi ∪M(µ̃), where
M(µ̃) is the set of all models that induce µ̃. A person is exposed to belief µ̃ if she is either weakly
or strongly exposed to µ̃. We think of weak exposure as capturing most communication across
networks. For instance, a person who views evidence as suggesting that a new vaccine is safe is
likely aware that there are people in “anti-vaccine” networks who believe otherwise. However, this
person is likely only aware of a thin slice of anti-vaccine arguments.

We say a person is persuaded through exposure to belief µ̃ if such exposure changes her final
beliefs. Person i is more persuadable than person j if i is persuaded through exposure to belief µ̃
whenever j is.

Proposition 3. Suppose everyone is maximally open to persuasion, M = Ma.

1. Suppose person i is weakly exposed to a belief µ̃ not represented in her network. Independent

of her network and the alternative belief, there are an infinite number of ways for the person

not to be persuaded through this exposure. For every set of models Mi and belief µ̃ not

supported by any model inMi, there exists positive measure of models m̃ = m(µ̃) supporting

µ̃ that fit less well than the best-fitting model in Mi.

2. Suppose person i is strongly exposed to a belief µ̃ not represented in her network. Then the

person is persuaded by this exposure if µ̃ is closer to her prior, as measured by Movement(·;µ0),

than any belief supported by a model in Mi.

The first part of Proposition 3 implies that weak exposure to beliefs outside a person’s network
is never guaranteed to impact her beliefs. The second part of Proposition 3 implies that strong
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exposure to an alternative belief has at least as much impact on ultimate beliefs and behavior as
weak exposure. While weak exposure to an alternative belief is never guaranteed to move final
beliefs, strong exposure will move final beliefs whenever the alternative belief is closer to the
person’s prior than other beliefs represented in her network.

These results provide a simple way of understanding why different beliefs persist across net-
works, despite the fact that there is communication across networks. We think of cross-network
communication as weak exposure. People might exchange both models and beliefs when interact-
ing with others in the same network, while only exchanging beliefs (and perhaps a subset of models
supporting those beliefs) when interacting with members of different networks. For instance, a per-
son who believes a school shooting indicates the need for stricter gun-control measures is likely
aware that there are others who conclude the opposite without being intimately familiar with all of
their arguments. Proposition 3 says that weak exposure to anti-gun control arguments is unlikely to
move the beliefs in the pro-gun control network. While a person might become convinced by lis-
tening to a broad set of arguments for a position, she is unlikely to be convinced by a narrow subset
of the arguments (or simply a statement of the position itself). In other words, getting someone out
of an ideological bubble requires immersing them in the arguments of people with different beliefs.
Simply making them aware that someone outside of her network holds that belief is insufficient.21

This result highlights a key difference between our framework and information-based approaches.
In information-based approaches, if two networks start from the same prior and see the same data,
they will end up with the same beliefs. In contrast, in our setting only strong exposure will tend to
lead to convergence in beliefs. We next turn to the impact of network expansion more broadly.

4.2 Expanding Networks

Next consider network expansions through merging networks: Expanding person i’s network by
merging it with M̃ enlarges the set of models that are shared with person i toMi∪M̃ . This exercise
helps assess the impact of increasing social connectedness.

Proposition 4. Suppose everyone is maximally open to persuasion,M = Ma. Let µi (mi) denote a

person’s belief (model) following social learning prior to a network expansion, and µei (me
i ) denote

her belief (model) following social learning with the expanded network.

1. Expanding person i’s network in any way weakly hardens her reaction to the data and makes

her less persuadable: for any expansion of Mi to Mi ∪ M̃ with M̃ ⊂ M , Pr(h|me
i , µ0) ≥

Pr(h|mi, µ0).
21In highlighting the importance of the breadth of arguments a person is exposed to, our model relates to “persuasive-

arguments theory” from psychology (e.g., Burnstein and Vinokur (1977) and also see Hüning et al. (2022) for recent
related evidence). However, persuasive-arguments theory emphasizes the number of distinct arguments a person is
exposed to, while we emphasize the compellingness of arguments (in terms of fit).
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2. If, in addition, everyone is in a shared-belief network, then expanding person i’s network in

any way also weakly mutes her reaction to the data: for any expansion of Mi to Mi ∪ M̃
with M̃ ⊂M , Movement(µei ;µ0) ≤ Movement(µi;µ0).

The first part of Proposition 4 shows that expanding a network always (weakly) hardens a
network member’s beliefs and makes them less persuadable. The most basic impact of increasing
connectedness in our model is increasing a person’s view that she can explain the data and making
her resistant to changing her mind.

The second part of the proposition shows that when networks are based on shared beliefs, ex-
panding the network always additionally mutes members’ beliefs. Being exposed to more models
increases fit and consequently reduces movement. In the limit where the person is exposed to all
possible models, the person will adopt a model that completely neutralizes the data: when data is
open-to-interpretation and relevant for updating beliefs about ω under the true model, expanding
a person’s shared-belief network further untethers her beliefs from reality. In other words, a freer
“marketplace of ideas” need not result in beliefs that are closer to the truth.

These results highlight the differences between our framework and typical information-based
theories of social learning, in which increasing connectedness tends to lead to more accurate be-
liefs. In our setting, larger networks increase the chances of hearing an interpretation that suggests
the data is perfectly consistent with a person’s prior and hence there is no need to update. These
results speak to concerns about the increased connectedness between people generated by social
media, which we discuss in Section 6 below.

5 Managing Communication

We now turn to the implications of our framework for how someone could try to manage commu-
nication to her advantage. We call this person a “communications manager.”

5.1 Managing Communication Through Messaging

We first consider managing communication through messaging. The key result is that messaging
is most effective as soon as data that is open to interpretation is released—that is, before social
learning—since it may impact which network a person joins. In other words, our framework
provides a reason for a communications manager to “get in front of the news” by providing a
favored interpretation.

To see this, consider shared-belief networks. Imagine that before joining such a network, per-
son i with belief µ′i is weakly exposed to belief µ̃ /∈ s(µ′i) with supporting model m(µ̃). Following
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exposure to model m(µ̃), the person potentially updates her beliefs and joins the shared-belief
network associated with her posterior.

Proposition 5. Suppose everyone is maximally open to persuasion, M = Ma, and is in a shared-

belief network. Let µi denote a person’s belief following social learning without being exposed to

a belief µ̃ /∈ s(µ′i), µei denote her belief following social learning after being exposed to belief µ̃,

and µpi denote her belief following social learning when exposed to belief µ̃ before social learning.

If a person is persuaded through (weak or strong) exposure to µ̃ after social learning, µei 6= µi,

then she is also persuaded through exposure to µ̃ before social learning, µpi 6= µi. However, the

converse does not hold.

This result says that exposing people to messaging (i.e., models supporting an alternative be-
lief) is more likely to impact which shared-belief network they join and hence their final beliefs if
exposure comes before they exchange models with others. As we see from this result, the reason
is simple: social learning hardens reactions to data, which inoculates people against finding mod-
els supporting alternative beliefs compelling. This may shed light on organizations’ attempts to
preemptively frame surprising news to avoid “losing control of the narrative.” For example, firms
often announce that a CEO unexpectedly resigned to “spend time with family.” Firms also often
have “culture training” for new employees before they socialize with existing employees. In our
framework, these actions serve to provide early interpretations that imply favorable beliefs—e.g.,
the CEO’s resignation does not imply the firm is in trouble—which in turn prevents people from
hardening views within networks centered around less favorable beliefs. After social learning,
people are less persuadable because their beliefs are supported by a better-fitting models. In other
words, social learning makes people more certain that their interpretations of the data are correct
and hence less open to other interpretations. A person who only talks to others who share the
reaction that the latest school shooting indicates the need for stricter gun-control measures will be-
come more confident in the rationale for drawing this conclusion from the data; a person who only
talks to others who share the reaction that the shooting indicates the need for looser gun-control
measures will similarly become more confident in drawing this conclusion from the data.22

22In a sense, this is consistent with Schkade et al. (2007), which found that after group interactions views on climate
change, affirmative action, and civil unions became more homogeneous and more confident. Some studies on such
“group polarization” find that beliefs also become “more extreme” after group interactions. Proposition 2 is consistent
with those findings insofar as extremity is measured by confidence and inconsistent with those findings insofar as
extremity is measured by how strongly beliefs react to data (if groups are formed based on shared beliefs and people
have common priors). On this last point, Roux and Sobel (2015) shows how group polarization naturally arises in
models of rational information aggregation.
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5.2 Managing Communication by Influencing Networks

We next consider how a communications manager might act by directly influencing the network
structure. For instance, she could hold meetings that invite a select group of people or form groups
based on certain shared beliefs, experiences, or interests. She might also try to prevent certain
groups from forming, actively trying to discourage people in one group from speaking to people
in another. For example, a CEO might insist on being in all meetings with certain subordinates. A
key point is that the communications manager often faces a tradeoff between inducing people to
take a specific action and inducing people to agree on the same model.

5.2.1 Promoting Specific Actions

Suppose first that the communications manager wants to encourage people to take some action in
response to the data. For example, in response to a school shooting, the manager might want to
encourage interpretations that either support tightening gun control, the status quo, or loosening
gun control. Or, following unexpectedly low earnings, a CEO may want to encourage followers to
interpret the data as supporting cutting costs, staying the course, or investing in growth.

Formally, consider the case where each person has a finite action space and the communications
manager’s objective is a strictly monotonically increasing function of the fraction of people who
choose her ideal action as ∈ A. How would the communications manager want to structure the
network—i.e., the set of models Mi a given person i is exposed to—to maximize this objective?

Proposition 6. Suppose each person has a finite action space and the communications manager’s

objective is a strictly monotonically increasing function of the fraction of people who choose her

ideal action as ∈ A. The communications manager cannot do better than, for every person i,

exposing her to all people who would choose as in the absence of social learning, and exposing

her to nobody else: That is, the communications manager’s objective is maximized by setting

Mi =
{
m ∈ M̄(h, µ0, d,M) : a(µ(h,m)) = as

}
(2)

for all i. The communications manager’s objective continues to be maximized by adding to Mi

specified in Eq. (2) any model m with Pr(h|m,µ0) < maxm̃∈Mi
Pr(h|m̃, µ0), but it is no longer

maximized by adding a model m with Pr(h|m,µ0) > maxm̃∈Mi
Pr(h|m̃, µ0).

This result says that the communications manager wants to expose people to all models that
support taking action as and no other models. That is, the communications manager wants to form
a directed network where everybody listens to people who support action as and does not want
people to hear good-fitting arguments supporting other actions. For example, a firm CEO may
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want to control interpretations of earnings announcements by disproportionately calling on bullish
analysts in earnings calls (Cohen et al. (2020)).

To illustrate these results, take the public-policy example Ex. 2 above with µ0(l) = 1/2 and
a history h that under the default is perfectly diagnostic of the underlying state being l. Suppose
the communications manager wants people to choose a = L. She should take individuals who
would choose a = R in the absence of communication and surround them with people who would
choose a = L in the absence of communication. For example, she should form networks where
all people whose initial reactions are left-leaning (µ(l) ≥ .75) talk to each person whose initial
reaction is right-leaning (µ(r) > .75). In this case, the right-leaning people would end up believing
µ(l) = .75. A key implication of our framework concerns whom the communications manager
most wants to silence: people who support the status quo—i.e., those with µ(l) ∈ (.25, .75). These
people will have arguments that fit the data given priors very well and support inaction.

For example, suppose a school shooting could lead to a loosening or tightening of gun-control
restrictions and the communications manager supports tighter gun control. The communications
manager wants people arguing for tighter gun control to speak and everyone else to listen. The
people the communications manager most wants to silence are moderates who argue for inaction,
whether or not they are left- or right-leaning.23

5.2.2 Promoting Shared Models

An implication of the above discussion is that promoting specific actions typically conflicts with
promoting shared models. Because the status quo is favored by interpretations that fit the data
perfectly and hence imply beliefs do not need to update, it can be hard to move people whose
initial reaction is that the data supports the status quo. In contrast, if the communications manager
simply wants people to end up with the same model—for instance, because she benefits when their
actions are coordinated—then she should encourage open communication.

To see this formally, suppose the communications manager’s objective is a strictly monotonically-
increasing function of the fraction of people who share what ends up being the most popular model.

Proposition 7. Suppose the communications manager’s objective is a strictly monotonically-increasing

function of the fraction of people who share what ends up to be the most popular model. The com-

munications manager cannot do better than, for every person i, exposing her to all models: That

23Continuing this logic in a trivial dynamic extension, once all the people arguing for tighter gun control have spoken
enough to harden beliefs, the communications manager is not worried about them having bilateral conversations with
people favoring looser gun control—but they would still be wary of them having bilateral conversations with those
who support the status quo.
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is, the communications manager’s objective is maximized by setting for all i

Mi = M̄(h, µ0, d,M). (3)

This result says that if the goal is for everyone to end up sharing the same model, the commu-
nications manager cannot do better than encouraging everyone to talk to each other and share their
models. When receivers are maximally open to persuasion, this means that the desire for everyone
to end up sharing the same model will lead everyone to end up with interpretations that neutralize
the data and promote the status quo. Note that this last point does not rely on the assumption that
people hold common priors: When people are maximally open to persuasion with non-common
priors, then it is still the case that the “h was inevitable” model is the only one that fits better than
every other model represented in the population. And when everyone adopts this model, they stick
with their prior beliefs and take the same action they would have taken in the absence of seeing the
data h—i.e., they stick with their status-quo actions.

6 Application 1: Sustained Disagreement in the Face of New
Information

Why do people disagree when the Internet and social media give them access to high-quality
information? Echo chambers are a common answer to this question. Under the echo-chamber view,
while people could access high-quality information, their actual media diets and social networks
only expose them to information consistent with their existing beliefs.

An emerging literature suggests that this echo-chamber view is incomplete. Guess et al. (2018)
argue that most Americans have diverse media diets, and that social media like Twitter tend to
increase the diversity of viewpoints that people are exposed to. Similarly, Bertrand and Kamenica
(2020) find that while social attitudes have become stronger predictors of political ideology over
time, they have not become stronger predictors of media diet. In addition, Boxell et al. (2017,
2020) find that while political polarization is increasing, it is not increasing faster for people who
extensively use the Internet and social media. Thus, while echo chambers could be a concern,
they may not be as widespread a problem as conventional wisdom portrays. The persistence of
disagreement remains a puzzle not fully explained by echo chambers.

Our framework offers a different explanation, highlighting the difference between interpreta-
tions and information. Within a network, people are exposed to crowdsourced models that evolve
to fit the data better and better, which makes them more certain their interpretation of the data is
correct. Insofar as social media and the Internet make it easier to form shared-belief networks, our
framework predicts that their primary impact will be to make people’s beliefs resistant to change.
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Proposition 8. Suppose person i and j hold the same beliefs µ. If person i formed those beliefs

through social learning in a shared-belief network and j formed those beliefs in some other way,

then person j is (weakly) more persuadable than person i.

Proposition 8 says that shared-belief networks inoculate people against finding alternative be-
liefs compelling. Combined with the earlier result that networks formed based on shared beliefs
mute reactions (Proposition 2), this implies that shared-belief networks cause beliefs to be persis-
tently untethered from data that is open to interpretation. To make an analogy to viruses, networks
lead interpretations to “mutate” to achieve better fit within the network—and people are exposed
to more “variants” within than across networks.24

We explore this idea to shed light on why disagreement between optimists (“bulls”) and pes-
simists (“bears”) persists in financial markets, highlighting a set of stylized empirical facts from a
social network for investors. A large literature in finance, going back to Miller (1977) and Harrison
and Kreps (1978), studies the consequences of disagreement for asset prices.25 Disagreement has
proven useful in explaining several phenomena in the stock market, including high trading volume
and overpriced stocks. Yet, a key question remains: why does disagreement persist in the face of
information that should resolve uncertainty?

Our framework delivers an answer: if bullish investors tend to talk to other bullish investors,
interpretations of new data that lead them to remain bullish will evolve in the bulls’ network.
Similarly, bearish interpretations of new data will evolve in the bears’ network. We provide stylized
empirical facts consistent with this idea using data from StockTwits, a social network for investors
that has been studied in recent papers on disagreement in financial markets, including Cookson and
Niessner (2020), Divernois and Filipovic (2022), and Cookson et al. (2022). StockTwits is a social
media platform similar to Twitter: users choose other users to follow and post short messages
visible to their followers. Founded in 2008, the platform had 6 million total users and 1 million
active monthly users at the end of 2021.26 The platform is geared towards allowing investors to
share with each other information and analysis about individual stocks. In particular, it allows
users to (i) tag their messages with individual stock tickers and (ii) label their messages with a flag
for bullish or bearish sentiment. These features make it straightforward to track a particular user’s

24Bowen et al. (2021) provide an alternative model where belief polarization is driven by misperceptions about
selective sharing of second-hand information within an echo chamber. In Bowen et al. (2021), disagreement and
polarization are driven by different people holding different information (having heterogeneous “information diets”
of second-hand information) and not properly accounting for that fact; in our model, disagreement arises even when
people share the same information. Their framework sheds light on situations where a lot of news is coming out each
day and it is hard to keep track of it all (e.g., if there is a war or people are forming beliefs about a new political
candidate). We shed light on situations where the basic facts are essentially common knowledge and people are
primarily exchanging interpretations of those facts.

25See Hong and Stein (2007) and Barberis (2018) for comprehensive reviews.
26See this (link) Bloomberg article.
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sentiment towards a particular stock over time. Cookson and Niessner (2020) perform a variety of
exercises to validate the data’s quality for measuring sentiment and disagreement.

Two stylized facts from StockTwits are relevant to our framework. First, Cookson et al. (2022)
study the network formation behavior of users to shed light on disagreement in the stock market.
They show that users who are bullish on a particular stock are more likely to start following other
users who are also bullish on the same stock. Similarly, bearish users are more likely to start fol-
lowing other bearish users. Moreover, this behavior is more pronounced immediately following
earnings announcements. In other words, StockTwits users act in a way consistent with our model-
ing of shared-belief networks in Section 3. Following a news announcement, they are more likely
to form networks with others who share their views on a particular stock.

Second, we analyze the dynamics of user sentiment around earnings announcements in Stock-
Twits messages between January 2011 and July 2018.27 For each message about a particular stock,
we code sentiment as 1 if the user labels the message as bullish and 0 if the user labels the message
as bearish. We drop messages that users do not label. We consider windows from 10 days before
an earnings announcement to 10 days after for a given stock. We restrict attention to users who
have ever posted a message about that stock prior to 10 days before the earnings announcement.
We code a user as a bull on the stock if the user labeled as bullish at least 50% of their messages
about the stock prior to 10 days before the earnings announcement. We code the user as a bear
if they labeled as bearish more than 50% of their messages about the stock. We then track how
sentiment evolves in response to different earnings announcements over the surrounding windows.
We code an announcement as positive news if the announcement day return is greater or equal to
zero and as negative news if the announcement day return is negative.28 Because different stocks
receive different amounts of attention, we weight the data so that each earnings announcement
is equally weighted. The final sample consists of roughly 1.8 million messages across 40,000
earnings announcements from 65,000 unique users.29

Figure 4a shows the evolution of sentiment for bulls around positive and negative earnings an-
nouncements. Corresponding regressions are reported in Appendix D. Around positive announce-
ments, sentiment remains unchanged: generally 94-95% of messages are labeled as bullish. The
pattern around negative earnings announcements contrasts sharply. Sentiment deteriorates in the

27We thank Marc-Aurèle Divernois and Damir Filipović for very generously sharing their data with us. Divernois
and Filipovic (2022) study this data, showing that sentiment measured from StockTwits can be used to forecast stock
returns on high-message volume days.

28Announcement days are defined as the first day that the stock can be traded after the announcement. For an-
nouncements that occur after the market close on a given day, the announcement day is thus coded as the next day.

29The sample is smaller than the overall scale of StockTwits for several reasons. First, we focus on messages about
individual stocks, not indices like the S&P 500. Second, we restrict to attention to messages labeled as bullish or
bearish by users. Third, we focus on windows around earnings announcements, which account for less than one-third
of trading days. Finally, the requirement that the user has posted a message with a bullish/bearish label about the stock
prior to the earnings announcement is restrictive.
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Figure 4: Evolution of Beliefs Around Earnings Announcements
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days leading up to the earnings announcement. There is then a sharp decline in sentiment at the
earnings announcement, with the fraction of messages labeled as bullish falling to under 85%,
statistically and economically different from its baseline value.30 In the days following the an-
nouncement, however, sentiment rapidly improves, converging back to 94-95% bullish. Within
two days of the announcement, sentiment is the same, regardless of whether the announcement
was positive or negative news. Figure 4b shows similar patterns for bears around positive news
announcements. Sentiment first improves but then converges back to its original level. Our data do
not allow us to directly demonstrate that these patterns are driven by the network itself—they could
reflect evolving interpretations people come up with by themselves. However, in traditional social
learning models based on sharing information, the network should push against such tendencies.

These patterns are consistent with our results in Section 3. Following a news announcement,
users form networks with users of similar beliefs. Within those networks, they are exposed to
interpretations of the data that make it less surprising. Thus, while users’ initial reactions may push
them away from their prior beliefs, the network will expose them to interpretations of the data that
pull them back. Bulls about a stock become more bearish following a negative announcement, for
example, but they return to being bullish once they are exposed to the best-fitting interpretations
that evolve within the bullish network.

7 Application 2: When and How to Hold a Meeting

Why do organizations hold so many meetings? Economic models typically assume meetings are
fundamentally about information exchange: One worker holds a piece of information that another
does not and exchanging information helps workers adapt to the environment and coordinate their
actions (e.g., Dessein and Santos (2006)). Under this view, meetings are essentially no different
from other communication technologies (e.g., emails) and are called when workers do not share
the same information set. After meetings, workers all agree on the optimal action, which is better
adapted to the full information set.

Organizational scholars view meetings much more broadly. They come in different forms,
such as town halls or all hands. They are sometimes about information exchange, but they are also
about diagnosing problems, communicating organizational priorities, and exchanging or amplify-
ing views on the right course of action.

This section formalizes such a role for meetings, building on the view put forward in Weick
(1995) that sensemaking is a fundamental activity of organizations. In the model, costly meetings
are called to help workers make sense of shared information. Meetings allow leaders to control

30Average sentiment for bulls during these event windows is 0.94 with a standard deviation of 0.24. For bears, the
corresponding numbers are 0.28 and 0.45.
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interpretations workers share with each other, and they are called even when workers do not have
any new private information. The structure of meetings is not fixed but depends on workers’ flow of
communication outside meetings and how the organization prioritizes adapting to the environment
versus coordinating among workers. In particular, meetings may help workers get on the same
page by muting their reaction to data instead of better adapting to the environment.

We consider a similar setting to Dessein and Santos (2006) and Bolton et al. (2013), closely
following the latter paper’s language and formulation. The environment is parameterized by ω ∈
[0, 1], which is not known by the leader or a continuum of followers. Instead, they have a uniform
prior over ω and interpret data h in terms of what it implies about ω.

The timing of the game is: (1) everyone observes h, (2) the leader announces the organization’s
strategy aL ∈ [0, 1] and perhaps holds a meeting to discuss it in light of h, (3) each follower
i ∈ [0, 1] chooses an action ai ∈ [0, 1], and (4) payoffs are realized. Each follower i has payoff:

−α · (ai − [li · aL + (1− li) · ω])2 − κ
∫
j

(aj − ā)2dj,

where α > 0, κ > 0, li ∈ [0, 1] and ā ≡
∫
ajdj. That is, each follower values (i) taking an action

that is aligned with a weighted average of the organization’s strategy aL and the environment ω
and (ii) coordinating with others. To limit the number of cases, assume that li = 0 for almost
all followers and li = 1 for positive fraction ε → 0 of followers.31 That is, almost all followers
care about taking an action that is well-adapted to the environment, rather than than taking an
action that is aligned with the organization’s strategy, and the rest of the followers mechanically
follow the organization’s strategy. Since it focuses on the case where li = 0 for fraction (1− ε) ≈
1 of followers, the analysis better applies to situations where workers care more about getting
things right than about following the leader. The leader’s payoff simply aggregates the followers’
payoffs:32

−α
∫
i

(ai − [li · aL + (1− li) · ω])2di− κ
∫
j

(aj − ā)2dj.

The leader and followers share the same default model. While the leader is dogmatic the default is
correct, followers may move away from it by sensemaking with fellow followers.

Because Ω in this example is the full unit interval, we for simplicity limit the set of models M

31Having some followers mechanically follow the organization’s strategy induces a cost to the leader of announcing
a different strategy from what she thinks is subjectively optimal. There are other ways to generate such a cost, e.g.,
by assuming that followers and leaders value an organization that is well-adapted to its environment as Bolton et al.
(2013) do. Our approach is analytically simple, but our qualitative results do not hinge on our precise formulation.

32For simplicity, we assume the leader evaluates her expected payoff according to her own expectation and not
followers’ subjective expectations. The leader has an incentive for followers’ actions to be well-adapted to the leader’s
view of the environment, but does not directly care whether the followers believe their actions are well-adapted.
Introducing the latter force could provide another reason to hold meetings in our framework: to get followers on board
with the direction of the organization, even when getting followers on board does not influence their actions.
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followers could consider to be finite. We assumeM always includes (i) the default model d, (ii) the
best-fitting model mbf that induces the same beliefs as d (i.e., µ(h,mbf ) = µ(h, d)), (iii) a model
that says the history is inevitable in hindsight (i.e., a model m such that Pr(h|m,µ0) = 1), and (iv)
at least one model m with a fit between the default’s and the best-fitting model’s: Pr(h|m,µ0) ∈
(Pr(h|d, µ0),Pr(h|mbf , µ0)) and µ(h,m) 6= µ(h, d). For simplicity, we also assume that mbf fits
better than all models in M except for the model that says the history is inevitable in hindsight.

If the leader does not hold a meeting, then workers make sense of h in their own networks.
Holding a meeting costs the leader a positive amount c that is vanishingly small. By holding a
meeting, the leader is able to perfectly control the set of models each worker is exposed to, Mi, by
influencing the flow of communication between followers.

Proposition 9. In the leader-follower example:

1. If information h is closed to interpretation or followers always stick with their default inter-

pretation of the information absent persuasion (δ = 1), the leader never holds a meeting. In

this case, aL = Eµ(h,d)[ω] for all h, and ai = aL for all i.

2. Otherwise, the leader may hold a meeting.

(a) If the weight placed on coordination (κ) is sufficiently large or if h is uninformative

under the default model in the sense that Eµ(h,d)[ω] = Eµ0 [ω] ≡ ω0, then the leader

calls a meeting whenever some followers take an action other than ω0 absent a meeting.

In this case (i) an optimal meeting features open communication (Mi = M for all i),

(ii) aL = ω0, and (iii) ai = ω0 for all i.

(b) If the weight placed on adaptation (α) is sufficiently large and followers should react to

the information under the default model in the sense that Eµ(h,d)[ω] 6= Eµ0 [ω] , then the

leader calls a meeting whenever too many followers take an action other than Eµ(h,d)[ω]

absent a meeting. In this case (i) an optimal meeting features directed communication

with Mi 6= M , (ii) aL 6= ω0, and (iii) not all followers take the same action.

The first part of Proposition 9 says that, when data is closed to interpretation or followers do not
try to make sense of the data on their own, then there is no need for the leader to call a meeting to
discuss the organization’s strategic response to publicly available data. The leader just announces
her strategic response, which varies one-for-one with the leader’s reaction to the data.

The second part of the proposition shows that the leader’s reaction is very different when data
is open to interpretation and followers try to make sense of it on their own. Meetings then allow
leaders to better control interpretations followers share with each other. If the leader thinks fol-
lowers are reacting to data when they should not be, or if the leader highly values coordination,
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then she calls a meeting which features open communication: everyone shares their view of what
the event means for the organization. While opinions will be voiced that the leader does not agree
with, at the end of the day everyone will share a view that the event teaches them little that they
did not already know. Thus, the status quo will prevail. In this case, the leader’s strategic re-
sponse to publicly available data may be different than her private response: if she believes that
she cannot persuade enough followers of her desired course of action, her best alternative is to
ensure coordination by structuring the meeting to neutralize the data. This may be one reason why
informal (e.g., relational) contracts are “hard to build and change” (emphasis added, Gibbons and
Henderson (2012b)).

On the other hand, if too many followers are underreacting to the data or the leader strongly
values adaptation, then the leader calls a meeting featuring a persuasive campaign. The leader
ensures that the loudest voices are those with interpretations consistent with her view of the optimal
action Eµ(h,d)[ω]. While not everyone ends up on board with the shift in strategy from the status
quo ω0, as many as possible will be on board. Per Proposition 5 there is also a motive to hold the
meeting as soon as possible, before workers can share interpretations with each other on their own.

8 Additional Network Structures

Much of our analysis focuses on shared-belief networks because they capture important features
of common networks. This section extends the analysis to two network structures that also seem
to be important in some situations.

8.1 Shared-Prior Networks

First, we consider situations where people form networks based on shared prior beliefs, using a
simple two-period dynamic extension of the analysis under the assumption that everyone is max-
imally open to persuasion. The key idea is that if networks form endogenously in response to
one set of information, those networks will tend to encourage different interpretations of all future
information. In other words, network formation based on shared-prior beliefs creates strong path
dependence in the way people interpret information.

Formally, suppose people begin with the same priors, react to data h1, and form shared belief
networks based on their reactions to h1. Further suppose that after exchanging models through
the network, people’s posterior beliefs after interpreting h1 become their priors in interpreting new
data h2. In interpreting h2, people share models with others in the shared-belief network that was
formed based on common reactions to earlier data h1. That is, networks are sticky across the
two periods: people stay in the shared-belief network that was formed in period 1. For example,
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people may talk to others who share a similar reaction to evidence purporting to show a relationship
between vaccines and autism and continue to talk to the same people when new data arrives.

The key result from this dynamic extension is that networks have lasting consequences on
how people interpret subsequent events. By Proposition 2, everyone within a given shared-belief
network ends up holding the initial belief closest to the prior within that network in response to
data h1. So everyone within a shared-belief network begins with the same prior entering into the
second period where they interpret data h2. Call this prior belief µs1, which differs across networks
s. Since people use the same network to exchange interpretations of h2, social learning maximally
mutes and hardens a person’s reaction to the data. In other words, everyone ends up at the belief
they held prior to seeing h2 with a model that perfectly explains the data: for every person i in
shared belief network s, µi = µs1 and Pr(h2|mi, µ

s
1) = 1.

This analysis suggests that once misconceptions evolve and harden within a network through
crowdsourced interpretations of a high-profile event, members of that network explain subsequent
events in a way that makes them consistent with the original interpretation. In other words, a bad
take on an event can be very hard to reverse: Once a person “goes down the rabbit hole”, it is
difficult to use new information to convince them to come out.

8.2 Shared-Model Networks

Second, we consider networks based on shared models, rather than shared beliefs. Astrologers
consider the movement of celestial bodies in making sense of what happened yesterday. Closer to
earth, some communities of venture capitalists primarily evaluate startups based on attributes of
their products, while others focus on attributes of their founders. In finance, there are contrarians
and trend followers. Some political analysts focus on economic fundamentals in predicting election
outcomes, while others focus on polls. How do networks shape views in such cases?

To analyze shared-model networks, consider a partition C over the set of admissible models
M , where we denote c(m) as the element inM that model m ∈M belongs in. In a shared-model

network, a person i exchanges models with another person j if and only if their initial models are
similar, in the sense that they fall in the same element ofM.

Definition 2. In a shared-model network, Mi =
{
m ∈ M̄(h, µ0, d,M) : m ∈ c(m′i)

}
for every

person i.

People in a given shared model network will end up agreeing on whichever model in c(m) maxi-
mizes Pr(h|·, µ0). Appendix B analyzes a special class of shared models based on shared inflexi-
bility: people may be commonly dogmatic on how to interpret certain types of information. This
may arise from shared expertise, shared beliefs about what sort of data is uninformative, shared
trust in taking some data at face value, or even a shared convention that some discussions are
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taboo. The key result is that, supposing data is maximally open to persuasion, people will only
end up reacting to the data that they are inflexible in interpreting. Quantitative analysts will talk
to other quantitative analysts about how to interpret qualitative information and end up agreeing
that, while it initially seemed relevant, it is not useful. Conversely, qualitative analysts will talk to
other qualitative analysts about how to interpret quantitative information and end up agreeing that,
while it initially seemed relevant, it is not useful. Similarly, people on the left will end up adopting
models that neutralize data communicated by right-leaning outlets, and similarly for people on the
right. When networks are based on shared models, social learning may intensify some opinions in
addition to hardening them.

9 Discussion

This paper is a first step to studying the social transmission of models. While we assume people
costlessly exchange models with others, in many cases people devote effort, attention, and time
to exposing themselves to new models for reasons of curiosity, identity, and instrumentality. How
does incorporating a realistic demand function for models influence, for example, the way networks
are structured?

We also show the importance of people’s prior beliefs for how they initially react to the data,
form networks with others, and ultimately react after exchanging interpretations. But, other than
in our dynamic extension in Section 8.1, we say little about where these priors come from. They
could come from motivated reasoning, a desire to foster relationships with family and friends, etc.
What we do shed light on is why beliefs often appear stable in the face of contradictory, but open-
to-interpretation, data. And we make the novel (to our knowledge) prediction that initial beliefs
will respond to such data before reverting towards the prior.

The framework admits further applications. For example, if a manager wants to organize teams
to help her arrive at a realistic interpretation of the data, how would she do it? Would she like to
construct teams who tend to reach similar conclusions (i.e., shared-belief networks)? Or teams who
look at the data in similar ways (i.e., shared-model networks, analyzed in Appendix B)? A loose
intuition reminiscent of Hong and Page (2001) that arises from our framework is that a manager
may benefit from aggregating across teams that have different ways of looking at the data (i.e.,
different models). A manager is less likely to benefit from trying to aggregate across teams that are
systematically trying to come to different conclusions from the data. For instance, in the venture
capital context, it may be helpful to have people who focus on management team experience and
people who focus on current profits. It is unlikely to be helpful to have people who always want to
invest and people who never want to invest, each of whom comes up with the interpretation of the
data that best supports their (pre-specified) conclusion.
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A Proofs
Proof of Proposition 1. This proof is essentially the same as the proof of Proposition 1 in Schwartzstein
and Sunderam (2021). We repeat it here for completeness.

Note that

µ(ω|h,m) =
πm(h|ω) · µ0(ω)

Pr(h|m,µ0)

by Bayes’ Rule. Since πm(h|ω) ≤ 1 and, by definition of M̄(h, µ0, d,M), Pr(h|m,µ0) ≥
Pr(h|d, µ0) for all m ∈ M̄(h, µ0, d,M), beliefs that do not lie in ¯̄∆(h, µ0, d,M) cannot be in-
cluded in ∆̄(h, µ0, d,M). To see that for rich enough M , all beliefs in ¯̄∆(h, µ0, d,M) are also in
∆̄(h, µ0, d,M), define m by

πm(h|ω) =
µ(ω|h,m)

µ0(ω)
× Pr(h|d, µ0) ∀ω ∈ Ω.

Proof of Proposition 2. Consider an arbitrary person i and let

MovementMini ≡ arg min
µ∈s(µ′i)

Movement(µ;µ0).

Someone in i’s network will propose a model m̃ that maximizes Pr(h|·, µ0) subject to µ(h, m̃) ∈
MovementMini. By Lemma 1, this model will fit strictly better than all models represented in i’s
network that imply beliefs outside of MovementMini, so everyone in i’s network will adopt models
that imply beliefs in MovementMini.

Proof of Corollary 1. Let

µleft-leaning n y

l aL bL

r cL dL

denote a movement-minimizing belief of members of the left-leaning network and

µright-leaning n y

l aR bR

r cR dR

denote a movement-minimizing belief among members of the right-leaning network.
For the left-leaning network, µleft-leaning(l) = aL+ bL ≥ k. Assuming, as we will later establish,

that Movement(µleft-leaning;µ0) = max
{
aL/a, bL/b

}
, then the inequality must bind, so bL = k −

aL. This then implies that Movement(µleft-leaning;µ0) = max
{
aL/a, (k − aL)/b

}
, which will be

minimized when aL/a = (k−aL)/b⇒ aL = k×a/(a+b) = k×µ0(n|l) and bL = k×b/(a+b) =
k × µ0(y|l).

Summarizing what we know so far:
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µleft-leaning n y

l k × a
a+b

k × b
a+b

r cL dL
=
µleft-leaning n y

l k × µ0(n|l) k × µ0(y|l)
r cL dL

and we can similarly establish that

µright-leaning n y

l aR bR

r k × c
c+d

k × d
c+d

=
µright-leaning n y

l aR bR

r k × µ0(n|r) k × µ0(y|r)
.

Proceeding further, cL and dL must satisfy the following constraints if the premise above is true
that Movement(µleft-leaning;µ0) = max

{
aL/a, bL/b

}
:

cL + dL = (1− k)⇒ dL = (1− k)− cL, and

max
{
cL/c, dL/d

}
= max

{
cL

c
,
(1− k)− cL

d

}
≤ max

{
aL/a, (k − aL)/b

}
=

k

µ0(l)
,

where the last equality follows from plugging in aL from the earlier calculations and, here, c =
µ0(r, n), d = µ0(r, y). The range of cL that satisfy these conditions is given by

max

{
0, (1− k)− k × µ0(r, y)

µ0(l)

}
≤ cL ≤ min

{
1− k, k × µ0(r, n)

µ0(l)

}
,

which is non-empty given the assumptions that k ≥ µ0(l) = 1/2. This last fact also establishes the
premise that Movement(µleft-leaning;µ0) = max

{
aL/a, bL/b

}
.

We can similarly derive that

max

{
0, (1− k)− k × µ0(r, n)

µ0(l)

}
≤ dL ≤ min

{
1− k, k × µ0(r, y)

µ0(l)

}
max

{
0, (1− k)− k × µ0(l, y)

µ0(r)

}
≤ aR ≤ min

{
1− k, k × µ0(l, n)

µ0(r)

}
max

{
0, (1− k)− k × µ0(l, n)

µ0(r)

}
≤ bR ≤ min

{
1− k, k × µ0(l, y)

µ0(r)

}
.

Taken together,
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µleft-leaning(y) ≥ max

{
k × µ0(y|l), k × µ0(y|l) + (1− k)− k × µ0(r, n)

µ0(l)

}
µleft-leaning(y) ≤ min

{
k × µ0(y|l) + 1− k, k × µ0(y|l) + k × µ0(r, y)

µ0(l)

}
µcenter-leaning(y) = µ0(y)

µright-leaning(y) ≥ max

{
k × µ0(y|r), k × µ0(y|r) + (1− k)− k × µ0(l, n)

µ0(r)

}
µright-leaning(y) ≤ min

{
k × µ0(y|r) + 1− k, k × µ0(y|r) + k × µ0(l, y)

µ0(r)

}
.

This then means that

µleft-leaning(y)− µright-leaning(y) ≥ max

{
k × µ0(y|l), k × µ0(y|l) + (1− k)− k × µ0(r, n)

µ0(l)

}
−min

{
k × µ0(y|r) + 1− k, k × µ0(y|r) + k × µ0(l, y)

µ0(r)

}
.

Assuming that µ0(l) = 1/2 and µ0(l, y) = µ0(r, n) ⇒ µ0(y|l) = µ0(n|r), then this inequality
reduces to

µleft-leaning(y)− µright-leaning(y) ≥

{
2k × µ0(y|l)− 1 if k ≥ µ0(r)

µ0(r)+µ0(l,y)

(1− 2k) if k < µ0(r)
µ0(r)+µ0(l,y)

.

We also have

µleft-leaning(y)− µright-leaning(y) ≤ min

{
k × µ0(y|l) + 1− k, k × µ0(y|l) + k × µ0(r, y)

µ0(l)

}
−max

{
k × µ0(y|r), k × µ0(y|r) + (1− k)− k × µ0(l, n)

µ0(r)

}
.

Assuming that µ0(l) = 1/2 and µ0(l, y) = µ0(r, n) ⇒ µ0(y|l) = µ0(n|r), then this inequality
reduces to

µleft-leaning(y)− µright-leaning(y) ≤

{
2k × (µ0(y|l)− 1) + 1 if k ≥ µ0(l)

µ0(l)+µ0(r,y)

k × (1 + µ0(y|l) + µ0(y|r))− 1 if k < µ0(l)
µ0(l)+µ0(r,y)

.

If k ≥ µ0(l)
µ0(l)+µ0(r,y)

, then the middle point between the lower and upper bound of µleft-leaning(y)−
µright-leaning(y)equals

k × (2× µ0(y|l)− 1) = k × (µ0(y|l)− µ0(y|r)) ,
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while for µ0(r)
µ0(r)+µ0(l,y)

≤ k ≤ µ0(l)
µ0(l)+µ0(r,y)

this middle point equals

k × (µ0(y|l) + 1)− 1 =
1

2
× k × (µ0(y|l)− µ0(y|r) + 3)− 1.

Moreover, for k ≥ 1
2×µ0(y|l) ≥

µ0(l)
µ0(l)+µ0(l,y)

, simple algebra reveals that the lower bound of µleft-leaning(y)−
µright-leaning(y) is greater than 0.

Proof of Proposition 3. 1. For every µ̃, there exists a positive measure of models m(µ̃) sup-
porting that belief that are less compelling than the model mi a person would adopt prior to
weak exposure to that belief: for example, take models

πm(µ̃)(h|ω) =
µ̃(ω)

µ0(ω)
· (Pr(h|mi, µ0)− ε)

for all ω ∈ Ω and for ε > 0 small.

2. When µ̃ is closer to the person’s prior, as measured by Movement(·;µ0), than any belief
supported by a model in Mi, then the best-fitting model supporting µ̃ fits better than any
model in Mi (by Lemma 1).

Proof of Proposition 4. 1. That expanding person i’s network hardens her reaction to data fol-
lows from the simple fact that maxm∈Me Pr(h|m,µ0) ≥ maxm∈M Pr(h|m,µ0) whenever
M e ⊃M .

2. That expanding person i’s network if anything mutes her reaction to the data when she’s
in a shared-belief network follows from the fact that mi is the best-fitting model inducing
µi, which fits better than any model inducing a belief further from her prior according to
Movement(·;µ0) (by Lemma 1).

Proof of Proposition 5. Weak exposure to belief µ̃ prior to social learning impacts the person’s
final beliefs if and only if the person finds m(µ̃) more compelling than the model m′i she currently
has in mind supporting belief µ′i: that is, if and only if

Pr(h|m(µ̃), µ0) > Pr(h|m′i, µ0). (4)

Weak exposure to belief µ̃ following social learning impacts the person’s final beliefs if and only
if the person finds m(µ̃) more compelling than the best-fitting model among those represented in
shared-belief network s(µ′i): that is, if and only if

Pr(h|m(µ̃), µ0) > max
m′∈

⋃
µ∈s(µ′

i
)M(µ)

Pr(h|m′, µ0). (5)

The result follows from the right-hand-side of inequality (5) being larger than the right-hand-side
of inequality (4).
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A similar proof applies to the case of strong exposure to beliefs, replacing the left-hand-sides
of inequalities (4) and (5) with maxm′∈M(µ̃) Pr(h|m′, µ0).

Proof of Proposition 6. The communication manager’s objective is clearly maximized by exposing
everybody to the best-fitting model that supports action as and exposing them to no other models.
The communication manager does no worse by exposing people to all models specified in Eq. (2)
(i.e., all models that support action as), since this includes the best-fitting one and no models that
support other actions. That is, everybody’s behavior is the same whether they are only exposed to
the best-fitting model that supports as or models specified in Eq. (2). This remains true if we add
to models specified in (2) any model m with Pr(h|m,µ0) < maxm̃∈Mi

Pr(h|m̃, µ0), since nobody
will adopt such a model. However, the communication manager’s payoff is strictly worse if we add
to models specified in (2) any modelm with Pr(h|m,µ0) > maxm̃∈Mi

Pr(h|m̃, µ0), since anybody
who would’ve adopted a model inMi will instead adopt this model which supports taking an action
other than as.

Proof of Proposition 7. If everybody is exposed to M̄(h, µ0, d,M), then everybody will also end
up adopting the model in that set that maximizes Pr(h|·, µ0). The communication manager cannot
do better, since everyone will end up sharing the same model.

Proof of Proposition 8. If person i forms her beliefs µ in a shared-belief network, then she adopts
the best fitting model inM that supports those beliefs. The fit of person j’s model supporting those
beliefs must then fit weakly less well than person i’s, which makes her weakly more persuadable.

Proof of Proposition 9. For the first case, it’s obvious that the leader never holds a meeting because
holding a meeting costs c > 0 and does not influence beliefs and decisions when information
is closed to interpretation or when followers always stick with their default interpretation of the
information absent persuasion. Since aL = Eµ(h,d)[ω] implies ai = aL for all i (this is obvious for
followers who blindly follow aL and other followers set ai = l · aL + (1− l) · Eµ(h,d)[ω] = aL), it
remains to show in this case that aL = Eµ(h,d)[ω]. Setting aL = Eµ(h,d)[ω] uniquely maximizes the
coordination term, −

∫
j
(aj − ā)dj, of the leader’s payoff since everyone coordinates on aL. Since

simple algebra shows that aL doesn’t influence the adaptation term,
∫
i
−(ai−[li·aL+(1−li)·ω])2di,

it is optimal for the leader to set aL = Eµ(h,d)[ω] .
For the first part of the second case, optimizing the leader’s payoff becomes equivalent to

maximizing the coordination term,
∫
j
(aj − ā)2dj, when the weight placed on coordination κ is

sufficiently large. Given that a positive fraction of followers initially adopt the perfectly-fitting
neutralizing model, the only way for all followers to perfectly coordinate their actions is for them
all to take ai = ω0. This is implemented by followers being exposed to all models, either with
open communication absent a meeting or with open communication in a meeting. This is also
optimal from the point of view of the leader when h is uninformative under the default model in
the sense that Eµ(h,d)[ω] = ω0. The leader does better by holding a meeting than not whenever
some followers would adopt a model that implies a belief other than µ0 absent a meeting.
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For the last part, if followers are exposed to all models (Mi = M for all i), then they perfectly
coordinate their actions and the leader’s payoff approximately equals

− αEµ(h,d)

∫
i

(ai − ω)2di = −αEµ(h,d)

∫
i

(ω0 − ω)2di, (6)

since li = 0 for almost all followers. If followers are instead all exposed to only models supporting
ai = Eµ(h,d)[ω] (i.e., Mi =

{
d,mbf

}
for all i), then the leader’s payoff approximately equals

−α
[
Eµ(h,d)ρ

∫
i

(Eµ(h,d)[ω]− ω)2di+ (1− ρ)

∫
i

(ω0 − ω)2di

]
−κ
∫
j

(aj−ρEµ(h,d)[ω]−(1−ρ)ω0)2dj,

(7)
where ρ equals the fraction of followers who are persuadable by mbf (i.e., fraction 1 − ρ are the
fraction with the initial reaction to adopt the perfectly-fitting neutralizing model). Since the first
term of (7) is larger than (6) when Eµ(h,d)[ω] 6= ω0, in this case the leader holds a meeting that
features directed communication whenever α is sufficiently large. Such a meeting will clearly be
better than not holding a meeting whenever followers whose initial reaction to the data differs from
µ(h, d) are not exposed to mbf absent a meeting or are exposed to the model that says the history
is inevitable in hindsight.33

33To see when else the leader wants to hold such a meeting, (7) minus (6) equals:

−αρEµ(h,d)

[
(Eµ(h,d)[ω]− ω)2 − (ω0 − ω)2

]
− κ

[∫
j

(aj − ρEµ(h,d)[ω]− (1− ρ)ω0)2dj

]
,

which, after some algebra, equals αρ(Eµ(h,d)[ω] − ω0)2 − κρ(1 − ρ)(Eµ(h,d)[ω] − ω0)2. So a meeting featuring
directed communication is optimal whenever α > κ(1− ρ). This reveals that a leader is more likely to call a meeting
to encourage followers to take an action different from ω0 the greater the fraction of followers who are persuadable
to take such an action—that is, the smaller the fraction of followers who, prior to the meeting, are hardened in their
views that the data tells them little they didn’t already know.
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Appendices for Online Publication

B Shared Model Networks

Some networks are based not on shared beliefs, but shared models.
Decompose h into two types of data, ha and hb. In predicting the success of a project, stock, or

politician, for example, there may be both quantitative or hard information, as well as qualitative
or soft information. In interpreting whether a left- or right-leaning policy is better, there may be
data communicated by left-leaning and right-leaning outlets.

Imagine there are networks that view ha as open to interpretation, but not hb, and vice-versa.
Quantitative analysts may believe they have a good handle on how to interpret hard information
but may be more open to different ways of thinking about qualitative information. Symmetrically,
qualitative analysts may have a single interpretation of soft interpretations but be open to many
interpretations of hard information. People on the left may believe they know how to interpret
left-leaning information, e.g., as trustworthy, but may be less sure on how to interpret right-leaning
information. More formally, suppose there are three categories of models:

cA =
{
m ∈ M̄(h, µ0, d,M) : πm(ha, hb|ω) = πm(hb|ω) · πmfa(ha|ω) ∀ ω ∈ Ω

}
cB =

{
m ∈ M̄(h, µ0, d,M) : πm(ha, hb|ω) = πm(ha|ω) · πmfb(hb|ω) ∀ ω ∈ Ω

}
cO = M̄(h, µ0, d,M) \

{
cA, cB

}
.

The first category of models, cA, has a fixed interpretation mfa of ha but differing interpretations
of hb. Conversely, category cB has a fixed interpretation mfb of hb but differing interpretations
of ha. Finally, category cO contains all other models. If shared inflexibility stems from shared
expertise, it is natural to assume mfa = mT and mfb = mT ; if it stems from shared beliefs that the
data is uninformative, it is natural to assume that mfa renders ha uninformative and mfb renders hb

uninformative; if it stems from shared trust in knowing the process, it’s natural to assume mfa = d

and mfb = d.
Supposing the data is maximally open to persuasion, M = Ma, then people with initial models

in cA will end up convincing themselves that hb is obvious in hindsight and hence uninformative,
while people with initial models in cB will end up analogously convincing themselves that ha is
uninformative.

Proposition 10. Suppose everyone is maximally open to persuasion, M = Ma, and is in a

shared-model network based on shared inflexibility of the form described above, where c(m) ∈{
cA, cB, cO

}
. Then social learning need not moderate everyone’s reaction to the data. In particu-

lar, social learning leads members of cA to view hb as uninformative, members of cB to view ha as
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uninformative, and members of cO to view h as uninformative, resulting in final beliefs:

µi =


µ(ha,mfa) if m′i ∈ cA

µ(hb,mfb) if m′i ∈ cB

µ0 if m′i ∈ cO.

Proof of Proposition 10. Recall that

cA =
{
m ∈ M̄(h, µ0, d,M) : πm(ha, hb|ω) = πm(hb|ω) · πmfa(ha|ω) ∀ ω ∈ Ω

}
.

Clearly, the best fitting model in cA is πm(ha, hb|ω) = 1 · πmfa(ha|ω) = πmfa(h
a|ω) for all ω ∈ Ω.

Similarly, the best fitting model in cB is πm(ha, hb|ω) = 1·πmfb(hb|ω) = πmfb(h
b|ω) for all ω ∈ Ω.

Finally, the best fitting model in cO is πm(ha, hb|ω) = 1 for all ω ∈ Ω. By assumption, someone in
each network will propose the associated best-fitting models which all network members will end
up adopting. The final beliefs µi follow.

As an illustration, consider networks based on shared expertise and imagine a company will
either be successful (ω = 1) or unsuccessful (ω = 0) with equal probability ex ante. People
are trying to forecast the success of the company based on hard, ha ∈

{
ha, h̄a

}
, and soft, hb ∈{

hb, h̄b
}

, information. The true probability of ha being h̄a or hb being h̄b is .75 conditional on
future success and .25 conditional on future failure, where hard and soft signals are conditionally
independent. Imagine that the hard and soft signals point in opposite directions, with the hard
signal being truly good (ha = h̄a) and the soft signal being bad (hb = hb). Then, the correct
response is to predict the probability of future success to be 1/2.

People’s initial reactions to these signals will vary significantly. However, by Proposition 10,
the network of soft-information experts will settle on explaining away the hard information and
come to believe the likelihood of future success to be 1/4. Conversely, the network of hard-
information experts will settle on explaining away the soft information and come to believe the
likelihood of future success to be 3/4. The non-experts will settle on explaining away all infor-
mation and believing the likelihood of future success to be 1/2. Since some people in the hard-
and soft-information networks will start with more moderate (and correct) reactions, in this exam-
ple social learning intensifies some opinions in the hard- and soft-model networks in addition to
hardening them.

With re-labeling, a similar example perhaps sheds light on so-called “epistemic closure” in po-
litical debates. Political observers argue that, in recent years, many of beliefs held by conservatives
and liberals seem divorced from reality. Pundit Jonathan Chait puts it in the following way:

46



the problem is that the [conservative] movement has created its own subculture,
and within this subculture, only information from sources controlled by the movement
is considered trustworthy or even worth paying attention to.34

The key problem, as Chait puts it, is not necessarily that liberals are unaware of information pro-
vided by conservatives and vice-versa, but rather that they hold shared beliefs that information
from the other side of the aisle is not worth grappling with. The analysis in this section shows that
this would be a consequence of shared inflexibility in believing information from your own side
is trustworthy. Under this interpretation, liberals are aware of conservative information. And they
begin with quite diverse opinions on how to interpret conservative information. But, in exchanging
interpretations, they end up settling on a shared view that they should not update based on that
information.

A final example of networks based on shared models is where the measure (1 − δ) of the
population who initially stick with the default are in one network and the rest of the population
are in others. For example, some portion of the population may not devote enough attention to
an issue to construct their own interpretation of the data beyond the default, nor to exchanging
interpretations with others.

When the default is accurate (e.g., in some cases taking scientific consensus at face value),
people who adhere to the default end up with more accurate interpretations and beliefs than those
in other networks. For example, a 2016 Pew report found that Americans “who care a great deal
about GM foods issue expected negative effects from these foods,” belying scientific consensus.
Similarly, Fernbach et al. (2019) found that people who are extremely opposed to GM foods think
they know the most about the safety of those foods, but actually know the least. Such Americans
pushed a number of unfounded interpretations of the data, including that eating GM foods caused
allergies, cancer, and autism.

C Muting in the VC Example

In the VC example in Section 3 of the main paper, sharing models in shared-belief networks does
not result in muting—optimists end up more optimistic after sharing models than they were on
average before sharing models and similarly pessimists end up more pessimistic on average. Here
we show using simulations that muting does appear to hold on average in the example, just not
for the particular realization of the data we consider in Section 3. In each simulation, we first
choose a value for the true success probability for the startup θ from a set of 40 values evenly
distributed on [0, 1]. We then randomly draw 5 startups with 3 characteristics: (i) success or failure

34https://newrepublic.com/article/74492/what-conservative-epistemic-closure-means
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with success having probability θ, (ii) profit, which is uniformly distributed on [0, 1], and (iii) team
experience, which is also uniformly distributed on [0, 1]. We consider models to explain success
or failure that are cutoff rules in either profit or team experience. Five cutoff rules are considered,
evenly spaced on each dimension. We compute the fit for all models, including the default model
that the success probability is constant across characteristics. We then select the best-fitting model
for optimists, i.e., the best-fitting model that implies an average posterior expected probability of
success θ̂ greater than 0.5, and the best-fitting model for pessimists, i.e., the best-fitting model that
implies θ̂ less than 0.5. For each value of the true success probability θ, we average the optimists’
θ̂ and the pessimists’ θ̂ over 5000 simulations.

Figure A1 reports the results. We see that relative to the updating that would have taken place
under the default model, there appears to be muting for both optimists and pessimists on average.
In other words, for any value of θ, the average optimists’ θ̂ and the average pessimists’ θ̂ is at least
as close to the prior average of 0.5 as the average θ̂ under the default model.

D Stocktwits Results

In this section, we provide regression evidence to supplement our analysis of StockTwits data
in Section 6 of the main paper. We start with the universe of StockTwits messages studied by
Divernois and Filipovic (2022), covering the period between January 2011 and July 2018. For
each message about a particular stock, we code sentiment as 1 if the user labels the message as
bullish and 0 if the user labels the message as bearish. We drop messages that users do not label.
We restrict the sample to windows from 10 days before an earnings announcement to 10 days after
for a given stock and restrict attention to users who have ever posted a message about that stock
prior to 10 days before the earnings announcement. We code a user as a bull on the stock if the
user labeled as bullish at least 50% of their messages about the stock prior to 10 days before the
earnings announcement. We code the user as a bear if they labeled as bearish less than 50% of their
messages about the stock. We then track how sentiment evolves in response to different earnings
announcements over the surrounding windows. We code an announcement as positive news if the
announcement day return is greater or equal to zero and as negative news if the announcement day
return is negative.35 The final sample consists of roughly 1.8 million messages across 40 thousand
earnings announcements from 65 thousand unique users.

Table A1 presents regression evidence corresponding to Figure 4a in the main paper. Among
the sample of users who are bullish on stock s for earnings announcement q, we estimate the

35Announcement days are therefore defined as the first day that the stock can be traded following the announcement.
For announcements that occur after the market close on a given day, the announcement day is then coded as the
following day.
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following regression:

1[Bullish]i,u,t,s,q = α+
10∑

l=−10

βl1[l = t] +
10∑

l=−10

γl1[l = t]1[NegativeSurprises,q] + εi,u,t,s,q, (8)

where

• 1[Bullish]i,u,t,s,q is an indicator that tweet i by user u on event-day t is bullish and

• 1[NegativeSurprises,q] is an indicator that the earnings announcement was a negative sur-
prise.

Standard errors are reported in parentheses and clustered by year-month, stock, and user.
The first column replicates Figure 4a, weighting the data so that each earnings announcement

is equally weighted. Note that to match the levels of Figure 4a, the constant in the regression must
be added back in. The key coefficients are γ−1 and γ0, which show that the sentiment of bullish
investors declines substantially around negative earnings announcements, and γ1to γ10, which show
that this decline is transient. The remaining columns show the robustness of the result. In the
second column, we weight tweets equally rather than equal-weighting announcements. This has
the effect of placing greater weight on announcements with more tweets. The remaining columns
add fixed effects for the year-month of the announcement, the announcement itself, and the user
interacted with the announcement. Across these variations, the basic pattern remains, though it
weakens somewhat in the last column. The sentiment of bullish investors declines substantially
around negative earnings announcements and then rebounds.

Table A2 presents regression evidence corresponding to Figure 4b in the main paper. Estimat-
ing Eq. (8) among the sample of users who are bearish on stock s for earnings announcement q, we
find that bearish investors become less bearish around positive earnings announcements but then
quickly revert.
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Figure A1: Muting in the VC Example

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Notes: This figure suggests that muting obtains on average in the VC example. For each of 40 different values of

the true probability of success, θ, we simulate data on a history of 5 startups, each of which varies in their profit and

team experience. VCs entertain models that are cutoff rules on each dimension. The figure plots the average posterior

expectation of the success probability, θ̂,of VCs under three models against the true success probability: the default

model (red line), the model adopted after optimists share interpretations, and the model adopted after pessimists share.

interpretations. The figure averages over 5000 simulations for each value of θ.
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Table A1: Bulls’ Beliefs around Earnings Announcements

(1) (2) (3) (4) (5)

t=-9 0.01 -0.01 0.01 0.00 0.00
(1.13) (-0.96) (1.19) (0.97) (1.44)

t=-8 0.00 -0.00 0.00 0.00 0.00
(0.04) (-0.62) (0.16) (0.27) (1.15)

t=-7 0.01 -0.00 0.01 0.01∗ 0.01
(1.16) (-0.94) (1.39) (1.76) (1.40)

t=-6 0.01∗ 0.00 0.01∗∗ 0.01∗∗ 0.00
(1.72) (0.28) (2.00) (2.13) (1.15)

t=-5 0.01∗∗ 0.00 0.01∗∗ 0.01∗∗ 0.01∗∗

(2.13) (0.06) (2.43) (2.51) (2.56)
t=-4 0.01 -0.01∗ 0.01 0.01 0.01∗

(1.20) (-1.80) (1.59) (1.39) (1.70)
t=-3 0.01 -0.00 0.01∗∗ 0.01∗ 0.01∗

(1.66) (-0.67) (2.13) (1.72) (1.96)
t=-2 0.01 -0.00 0.01 0.00 0.01∗∗

(0.96) (-0.70) (1.53) (1.00) (2.58)
t=-1 0.00 -0.01 0.01 0.01 0.01∗∗

(0.36) (-1.46) (0.95) (1.42) (3.27)
t=0 0.01 -0.01∗∗ 0.01 0.01∗ 0.01∗∗

(0.80) (-2.02) (1.58) (1.91) (3.39)
t=1 -0.01∗ -0.02∗∗ -0.01 -0.01 0.01∗∗

(-1.87) (-4.75) (-1.18) (-1.24) (2.33)
t=2 -0.01 -0.01∗∗ -0.00 -0.00 0.01∗

(-1.32) (-2.10) (-0.58) (-0.32) (1.75)
t=3 -0.01 -0.02∗∗ 0.00 -0.00 0.01∗∗

(-0.74) (-2.38) (0.04) (-0.24) (2.38)
t=4 -0.00 -0.01∗ 0.00 0.00 0.01∗

(-0.29) (-1.68) (0.60) (0.42) (1.72)
t=5 -0.00 -0.01∗∗ 0.01 0.00 0.01∗∗

(-0.05) (-2.09) (0.73) (0.51) (2.07)
t=6 -0.01 -0.02∗∗ -0.00 -0.00 0.01∗∗

(-1.58) (-3.07) (-0.57) (-0.85) (2.20)
t=7 -0.02∗ -0.01∗∗ -0.01 -0.00 0.01∗∗

(-1.97) (-2.16) (-1.02) (-0.59) (2.54)
t=8 -0.01∗ -0.01∗∗ -0.00 -0.00 0.01∗∗

(-1.79) (-2.45) (-0.57) (-0.40) (2.62)
t=9 -0.00 -0.02∗∗ 0.00 0.01 0.02∗∗

(-0.58) (-2.52) (0.66) (1.34) (2.97)
t=10 0.00 -0.00 0.01∗ 0.01∗ 0.02∗∗

(0.46) (-0.23) (1.81) (1.87) (4.12)
t=-10 × Neg -0.02∗∗ -0.02∗∗ -0.02∗∗ -0.03∗∗ -0.02∗∗

(-2.75) (-2.25) (-3.03) (-4.93) (-4.51)
t=-9 × Neg -0.03∗∗ -0.02∗∗ -0.03∗∗ -0.04∗∗ -0.03∗∗

(-3.77) (-3.22) (-3.92) (-6.60) (-6.83)
t=-8 × Neg -0.03∗∗ -0.01∗∗ -0.03∗∗ -0.03∗∗ -0.03∗∗

(-2.86) (-2.68) (-2.93) (-5.56) (-6.26)
t=-7 × Neg -0.04∗∗ -0.02∗∗ -0.04∗∗ -0.04∗∗ -0.03∗∗

(-4.73) (-4.00) (-4.62) (-6.82) (-5.83)
t=-6 × Neg -0.04∗∗ -0.03∗∗ -0.04∗∗ -0.04∗∗ -0.03∗∗

(-5.83) (-5.55) (-5.44) (-7.65) (-5.69)
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t=-5 × Neg -0.04∗∗ -0.04∗∗ -0.04∗∗ -0.04∗∗ -0.03∗∗

(-5.71) (-5.80) (-5.21) (-5.78) (-4.99)
t=-4 × Neg -0.05∗∗ -0.04∗∗ -0.05∗∗ -0.05∗∗ -0.03∗∗

(-6.87) (-5.94) (-6.26) (-8.16) (-6.85)
t=-3 × Neg -0.05∗∗ -0.04∗∗ -0.05∗∗ -0.05∗∗ -0.03∗∗

(-5.17) (-4.93) (-4.85) (-6.28) (-6.44)
t=-2 × Neg -0.06∗∗ -0.04∗∗ -0.05∗∗ -0.06∗∗ -0.03∗∗

(-5.80) (-5.42) (-5.50) (-8.39) (-6.44)
t=-1 × Neg -0.09∗∗ -0.06∗∗ -0.09∗∗ -0.08∗∗ -0.04∗∗

(-5.63) (-7.10) (-5.55) (-8.34) (-8.40)
t=0 × Neg -0.10∗∗ -0.06∗∗ -0.10∗∗ -0.08∗∗ -0.03∗∗

(-7.60) (-8.96) (-7.25) (-9.72) (-7.43)
t=1 × Neg -0.03∗∗ -0.04∗∗ -0.03∗∗ -0.03∗∗ -0.01∗∗

(-4.34) (-5.53) (-3.63) (-5.56) (-3.07)
t=2 × Neg -0.00 -0.00 0.00 -0.01 -0.01

(-0.60) (-0.63) (0.12) (-1.32) (-1.21)
t=3 × Neg -0.00 0.00 0.00 -0.01 -0.01

(-0.26) (0.32) (0.48) (-1.53) (-1.63)
t=4 × Neg -0.00 0.00 0.00 -0.01 -0.01

(-0.08) (0.17) (0.44) (-1.29) (-1.58)
t=5 × Neg 0.00 0.00 0.01 -0.00 -0.01∗∗

(0.62) (1.08) (1.13) (-0.90) (-2.05)
t=6 × Neg 0.00 -0.00 0.01 -0.00 -0.00

(0.41) (-0.41) (1.18) (-0.28) (-0.51)
t=7 × Neg 0.00 -0.00 0.01 -0.00 -0.00

(0.39) (-0.62) (1.26) (-0.16) (-0.91)
t=8 × Neg -0.00 -0.01∗ 0.00 -0.00 -0.00

(-0.40) (-1.72) (0.64) (-0.68) (-0.83)
t=9 × Neg -0.00 -0.01 0.00 0.00 -0.00

(-0.37) (-1.08) (0.56) (0.17) (-0.95)
t=10 × Neg -0.00 -0.01 0.00 0.00 0.00

(-0.57) (-0.78) (0.60) (.) (.)
Constant 0.94∗∗ 0.96∗∗ 0.93∗∗ 0.94∗∗ 0.94∗∗

(124.89) (262.61) (127.29) (291.92) (428.90)

Weighting Event Tweet Event Event Event
Fixed Effects YM Event User x Event
R2 .013 .0076 .019 .27 .77
N 1613258 1613258 1613258 1602495 1452718

Notes: This table presents the evolution of bulls’ beliefs around positive and negative earnings announcements.
The sample is all tweets within 10 days of an earnings announcement by users who have tweeted at least once about
the stock before the ±10-day window, with more than 50% of these prior tweets self-labeled as bullish. Let s denote
the stock, q denote the announcement event (quarter), t denote the day relative to the event (ranging from -10 to 10
with t = 0 corresponding to the event date). The dependent variable is an indicator that a tweet on event-day t for
stock f and event q is self-labeled as bullish. The independent variables are dummies for t, interacted with dummies
indicating that the earnings announcement was negative, measured by negative announcement day returns. The event
date (t = 0) is defined as the first day the news is tradeable. The Weighting row indicates whether the regression is
weighted to equal-weight each event or unweighted (i.e., each tweet is weighted equally). Standard errors are reported
in parentheses and clustered by year-month, stock, and user.
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Table A2: Bears’ Beliefs around Earnings Announcements

(1) (2) (3) (4) (5)

t=-9 0.01 -0.00 0.01 0.00 -0.03
(0.30) (-0.06) (0.34) (0.11) (-1.48)

t=-8 -0.02 -0.01 -0.02 -0.01 -0.01
(-0.78) (-0.14) (-0.79) (-0.51) (-1.09)

t=-7 0.04 0.01 0.04∗ 0.03 -0.01
(1.61) (0.23) (1.67) (1.36) (-1.10)

t=-6 0.03 0.01 0.03 0.00 0.00
(1.45) (0.28) (1.27) (0.18) (0.04)

t=-5 0.06∗∗ 0.03 0.05∗∗ 0.02 -0.01
(2.28) (1.06) (2.10) (0.78) (-0.36)

t=-4 0.07∗∗ 0.00 0.06∗∗ 0.01 -0.02
(2.54) (0.02) (2.26) (0.36) (-0.96)

t=-3 0.06∗∗ 0.03 0.05∗ 0.02 -0.00
(2.16) (0.82) (1.79) (0.59) (-0.13)

t=-2 0.08∗∗ 0.05 0.07∗∗ 0.03 0.00
(3.08) (1.13) (2.71) (1.53) (0.36)

t=-1 0.10∗∗ 0.04 0.09∗∗ 0.02 -0.01
(3.28) (1.17) (2.96) (0.82) (-1.17)

t=0 0.11∗∗ 0.05 0.09∗∗ 0.01 -0.02∗

(3.14) (1.34) (2.84) (0.56) (-1.92)
t=1 -0.01 -0.02 -0.02 -0.06∗∗ -0.05∗∗

(-0.34) (-0.70) (-0.82) (-2.66) (-3.43)
t=2 -0.04 -0.05 -0.05∗ -0.07∗∗ -0.05∗∗

(-1.34) (-1.61) (-1.80) (-2.95) (-3.51)
t=3 -0.02 -0.05 -0.03 -0.06∗∗ -0.05∗∗

(-0.78) (-1.63) (-1.26) (-2.52) (-2.78)
t=4 -0.05∗ -0.06 -0.07∗∗ -0.08∗∗ -0.06∗∗

(-1.88) (-1.66) (-2.50) (-3.25) (-3.23)
t=5 -0.04 -0.05∗ -0.05∗∗ -0.07∗∗ -0.05∗∗

(-1.65) (-1.68) (-2.33) (-3.47) (-2.80)
t=6 -0.05∗ -0.09∗∗ -0.06∗∗ -0.09∗∗ -0.05∗∗

(-1.94) (-2.67) (-2.66) (-3.60) (-2.87)
t=7 -0.08∗∗ -0.11∗∗ -0.10∗∗ -0.10∗∗ -0.07∗∗

(-2.86) (-3.13) (-3.71) (-3.87) (-3.80)
t=8 -0.09∗∗ -0.12∗∗ -0.11∗∗ -0.12∗∗ -0.08∗∗

(-3.27) (-3.18) (-4.17) (-5.07) (-4.01)
t=9 -0.08∗∗ -0.11∗∗ -0.10∗∗ -0.12∗∗ -0.08∗∗

(-2.49) (-3.32) (-3.34) (-4.30) (-3.71)
t=10 -0.10∗∗ -0.12∗∗ -0.12∗∗ -0.14∗∗ -0.09∗∗

(-3.23) (-3.28) (-4.31) (-5.62) (-4.09)
t=-10 × Neg -0.06∗∗ -0.08∗∗ -0.06∗∗ 0.05∗∗ 0.00

(-2.36) (-2.43) (-2.05) (2.00) (0.24)
t=-9 × Neg -0.09∗∗ -0.05 -0.08∗∗ 0.01 -0.00

(-3.36) (-1.60) (-2.96) (0.56) (-0.17)
t=-8 × Neg -0.07∗∗ -0.06 -0.07∗∗ 0.02 -0.01

(-2.85) (-1.42) (-2.47) (1.10) (-0.32)
t=-7 × Neg -0.08∗∗ -0.08∗∗ -0.08∗∗ 0.03 0.01

(-3.29) (-2.19) (-3.06) (1.28) (0.61)
t=-6 × Neg -0.07∗∗ -0.07∗ -0.07∗∗ 0.03 0.01

(-2.82) (-1.87) (-2.75) (1.45) (0.77)
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t=-5 × Neg -0.09∗∗ -0.08∗∗ -0.09∗∗ 0.01 -0.01
(-3.52) (-2.03) (-3.58) (0.60) (-0.40)

t=-4 × Neg -0.10∗∗ -0.10∗∗ -0.10∗∗ -0.00 -0.01
(-3.50) (-2.80) (-3.59) (-0.10) (-0.54)

t=-3 × Neg -0.08∗∗ -0.10∗∗ -0.08∗∗ 0.02 -0.00
(-3.09) (-2.58) (-3.13) (0.91) (-0.14)

t=-2 × Neg -0.09∗∗ -0.10∗∗ -0.10∗∗ -0.00 -0.02
(-3.65) (-2.74) (-3.60) (-0.15) (-0.96)

t=-1 × Neg -0.11∗∗ -0.11∗∗ -0.12∗∗ -0.03 -0.03
(-4.43) (-3.06) (-4.76) (-1.53) (-1.64)

t=0 × Neg -0.13∗∗ -0.14∗∗ -0.14∗∗ -0.05∗∗ -0.02
(-5.32) (-3.88) (-5.56) (-2.87) (-1.63)

t=1 × Neg -0.06∗∗ -0.10∗∗ -0.07∗∗ 0.01 -0.01
(-2.13) (-2.60) (-2.57) (0.49) (-0.29)

t=2 × Neg -0.01 -0.07∗ -0.02 0.07∗∗ 0.01
(-0.45) (-1.79) (-0.93) (3.67) (0.70)

t=3 × Neg -0.01 -0.05 -0.02 0.07∗∗ 0.02
(-0.40) (-1.26) (-0.78) (3.97) (0.94)

t=4 × Neg -0.02 0.01 -0.02 0.06∗∗ 0.00
(-0.67) (0.13) (-0.82) (2.83) (0.12)

t=5 × Neg -0.02 -0.04 -0.03 0.06∗∗ 0.01
(-0.57) (-1.05) (-0.98) (2.42) (0.47)

t=6 × Neg -0.04∗ -0.08∗∗ -0.06∗∗ 0.04∗∗ 0.01
(-1.95) (-2.22) (-2.36) (2.10) (0.56)

t=7 × Neg -0.05∗ -0.07∗∗ -0.06∗∗ 0.03 -0.00
(-1.86) (-2.00) (-2.51) (1.57) (-0.08)

t=8 × Neg -0.05∗∗ -0.09∗∗ -0.07∗∗ 0.02 -0.01
(-2.02) (-2.63) (-2.67) (0.85) (-0.61)

t=9 × Neg -0.10∗∗ -0.12∗∗ -0.12∗∗ -0.02 -0.02
(-3.15) (-3.35) (-4.06) (-0.92) (-1.42)

t=10 × Neg -0.08∗∗ -0.16∗∗ -0.11∗∗ 0.00 0.00
(-2.91) (-4.61) (-3.65) (.) (.)

Constant 0.37∗∗ 0.34∗∗ 0.38∗∗ 0.33∗∗ 0.32∗∗

(14.59) (10.20) (16.32) (27.12) (33.77)

R2 0.02 0.02 0.04 0.43 0.81
N 220,280 220,280 220,280 213,854 187,869
Weighting Event Tweet Event Event Event
Fixed Effects YM Event User x Event

Notes: This table presents the evolution of bears’ beliefs around positive and negative earnings announcements.
The sample is all tweets within 10 days of an earnings announcement by users who have tweeted at least once about
the firm before the ±10-day window, with more than 50% of these prior tweets self-labeled as bearish. Let f denote
the firm, q denote the announcement event (quarter), t denote the day relative to the event (ranging from -10 to 10
with t = 0 corresponding to the event date). The dependent variable is an indicator that a tweet on event-day t for
firm f and event q is self-labeled as bullish. The independent variables are dummies for t, interacted with dummies
indicating that the earnings announcement was negative, measured by negative announcement day returns. The event
date (t = 0) is defined as the first day the news is tradeable. The Weighting row indicates whether the regression is
weighted to equal-weight each event or unweighted (i.e., each tweet is weighted equally). Standard errors are reported
in parentheses and clustered by year-month, firm, and user.
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