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Abstract

We develop a model in which specialized bond investors must absorb shocks to the
supply and demand for long-term bonds in two currencies. Since long-term bonds and
foreign exchange are both exposed to unexpected movements in short-term interest rates,
a shift in the supply of long-term bonds in one currency influences the foreign exchange
rate between the two currencies, as well as bond term premia in both currencies. Our
model matches several important empirical patterns, including the co-movement between
exchange rates and term premia, as well as the finding that central banks’ quantitative
easing policies impact exchange rates. An extension of our model links spot exchange rates
to the persistent deviations from covered interest rate parity that have emerged since 2008.
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I Introduction

There is a growing recognition that financial intermediaries play an important role in determining
foreign exchange (FX) rates (Kouri [1976], Evans and Lyons [2002], Froot and Ramadorai [2005],
Gabaix and Maggiori [2015], Itskhoki and Mukhin [2021]). When there are frictions in financial
intermediation, exchange rates move in response to shifts in the supply and demand for assets
in different currencies, which intermediaries must absorb. Since the wealth of intermediaries in
FX markets need not be closely tied to aggregate consumption or conditions in broader financial
markets, this approach can explain the disconnect of exchange rates from macroeconomic funda-
mentals (Obstfeld and Rogoff [2000]) and the predictability of currency returns (Fama [1984]).

In this paper, we provide a framework for understanding how the structure of financial inter-
mediation impacts foreign exchange rates and show that this approach can shed light on numerous
puzzles in the exchange rate literature. We start by assuming that global bond and FX mar-
kets are integrated with one another but segmented from other financial markets. We make this
assumption for two reasons. First, foreign exchange is conceptually similar to long-term bonds
in that both are “interest-rate sensitive” assets: they are heavily exposed to news about future
short-term interest rates. Thus, the physical and human capital needed to trade long-term bonds
can also be used to trade FX. Indeed, at most major dealer-banks and hedge funds, interest-rate
and FX trading are tightly integrated.

Second, concrete motivation for this assumption comes from recent work showing that quan-
titative easing (QE) policies—i.e., large-scale purchases of long-term bonds by central banks—
significantly impacted foreign exchange rates and not just long-term bond yields, suggesting
important linkages between the two markets For example, Bauer and Neely (2014), Neely (2015),
Swanson (2017), and Bhattarai and Neely (2018) show that the Fed’s long-term bond purchases
were associated with a large depreciation of the U.S. dollar vis-a-vis other major currencies.

A quantity-driven, supply-and-demand approach in the spirit of Tobin (1958, 1969) provides a
natural explanation for bond price movements stemming from QE[]] According to this “portfolio
balance” view, holding fixed the expected path of future short-term rates, a reduction in the
supply of long-term bonds—such as QE—Ileads to a fall in long-term bond yields because it
reduces the total amount of interest rate risk borne by specialized financial intermediaries. Since
the fixed-income market is assumed to be partially segmented from other parts of the broader
capital markets, these intermediaries cannot diversify away the interest rate risk they bear and
must be paid to absorb shocks to the supply and demand for long-term bonds. This segmentation
explains why QE policies—which, while large relative to national bond markets, are small relative
to global markets for all financial assets—have a large impact on long-term yields.

Our paper shows that this same quantity-driven, supply-and demand approach can also ex-
plain many empirical facts about exchange rates, including their response to QE. The key insight
is that, as noted above, foreign exchange and long-term U.S. bonds are exposed to the same
primary risk factor—unexpected movements in short-term U.S. interest rates. Thus, if the global
bond and FX markets are integrated with one another, a shift in the supply of long-term U.S.

ISee, for example, Greenwood and Vayanos (2014), Vayanos and Vila (2021), Hamilton and Wu (2012),
D’Amico and King (2013), and Greenwood, Hanson, and Vayanos (2016).



bonds like QE affects the risk premium on both types of assets.

Our baseline model is a straightforward generalization of the Vayanos and Vila (2021) term
structure model to a setting with two currencies. Specifically, we consider a model with short-
term and long-term bonds in two currencies, which we label the U.S. dollar (USD) and the euro
(EUR). Short-term interest rates in each currency are exogenous and evolve stochastically over
time. We assume that short rates in the two currencies are positively, but imperfectly, correlated.

The key friction in the model is that the marginal investors in global bond and FX markets—
whom we call “global bond investors”—are specialized. These investors must absorb exogenous
shocks to the supply and demand for long-term bonds in both currencies, as well as demand
shocks in the foreign exchange market. Since these specialists have limited risk-bearing capacity,
they will only absorb these shocks if the expected returns on long-term bonds in both currencies,
as well as foreign exchange, adjust in response.

To solve the model, we must pin down three equilibrium prices: the long-term yield in each
currency and the exchange rate between the two currencies—the number of dollars per euro.
Equivalently, we need to determine the equilibrium expected returns on three long-short trades:
a “yield curve trade” in each currency—which borrows short-term and lends long-term—and an
“FX trade”—which borrows short-term in dollars and lends short-term in euros.

This baseline model predicts that shifts in the supply of long-term bonds impact not only term
premia, but also the expected returns on the FX trade and hence exchange rates. For instance,
an increase in the supply of long-term U.S. bonds raises both the expected excess return on
long-term U.S. bonds and the expected return on the borrow-in-dollar lend-in-euro FX trade,
leading to a depreciation of the euro versus the dollar.

The key intuition is that the U.S. yield curve trade and the borrow-in-dollar lend-in-euro
FX trade have similar exposures to U.S. short rate risk. First, when the U.S. short rate rises
unexpectedly, long-term U.S. yields also rise through an expectations hypothesis channel: the
expected path of U.S. short rates is now higher, so long-term U.S. yields must rise for long-term
U.S. bonds to remain attractive to investors. As a result, the price of long-term U.S. bonds falls,
so investors in the U.S. yield curve trade lose money. The borrow-in-dollar lend-in-euro FX trade
is also exposed to U.S. short rate risk. When the U.S. short rate rises unexpectedly, the euro
depreciates through an uncovered-interest-rate-parity (UIP) channel: since future short rates are
now expected to be higher in the U.S. than in Europe, the euro must fall and then be expected
to appreciate for short-term euro bonds to remain attractive. Thus, the FX trade suffers losses
at the same time as the U.S. yield curve trade.

Now consider the effect of an increase in the supply of long-term U.S. bonds—e.g., because the
Federal Reserve announces it is going to unwind its QE policies. Following this outward supply
shift, global bond investors will be more exposed to future shocks to short-term U.S. interest
rates. As a result, the price of bearing U.S. short rate risk must rise. Since long-term U.S. bonds
are exposed to U.S. short rate risk, this leads to a rise in the term premium component of long-
term U.S. yields. It also leads to a rise in the risk premium on the borrow-in-dollar lend-in-euro

FX trade, which is similarly exposed to U.S. short rate risk. As a result, the euro must depreciate



against the dollar and will be expected to appreciate going forward |

The baseline model makes several additional predictions. First, we show that bond supply
shocks should have a larger impact on the bilateral exchange rate when the correlation between
the two countries’ short rates is lower. For example, the JPY-USD exchange rate should be
more responsive to U.S. QE than the EUR-USD exchange rate because Japanese short rates are
less correlated with U.S. short rates than are Euro short rates. Second, our model matches the
otherwise puzzling finding in Lustig, Stathopoulos, and Verdelhan (2019) that the return to the
FX trade declines if one borrows long-term in one currency to lend long-term in the other. In our
model, this pattern arises because the “long-term” FX trade has offsetting exposures to short-rate
shocks, making it less risky for global bond investors than the standard FX trade involving short-
term bonds. Third, if we assume that the net supply of each risky asset is increasing its price,
our model offers a unified explanation that links the predictability of FX returns documented by
Fama (1984) with the predictability of long-term bond returns documented by Fama and Bliss
(1987) and Campbell and Shiller (1991).

After fleshing out these basic predictions, we extend our model in several ways to explore how
the detailed structure of financial intermediation impacts foreign exchange rates. We first explore
what happens if intermediation is further segmented within global bond and FX markets. Specif-
ically, we replace some of our flexible global bond investors with local-currency bond specialists,
who can only trade short- and long-term bonds in their local currency, as well as with specialists
who only conduct the FX trade. Introducing this further specialization delivers two additional
effects relative to the baseline model. First, shocks to the supply of long-term bonds trigger
FX trading flows between different investor types. In this way, we endogenize the FX flows in
Gabaix and Maggiori (2015), ascribing them to broader capital markets forces, and these flows in
turn impact exchange rates. Second, shocks to the supply of long-term bonds in either currency
generally have a larger impact on the exchange rate than in the baseline model. This effect arises
because further segmentation effectively reduces bond investors’ collective risk-bearing capacity.

In our next extension, we add non-risk-based bank balance sheet constraints to our model,
which Du, Tepper, and Verdelhan (2018) show are critical for explaining the post-2008 violations
of covered interest rate parity (CIP). We show that doing so provides a simple and plausible
explanation for the fact that CIP deviations co-move with spot exchange rates, as documented
by Avdjiev, Du, Koch, and Shin (2019) and Jiang, Krishnamurthy, and Lustig (2021a). The
intuition is that a positive U.S. bond supply shock generates demand from Euro investors to
buy long-term U.S. bonds and hedge the associated FX risk. Since doing so consumes scarce
balance-sheet capacity, banks will only accommodate this hedging demand if there are deviations
from CIP, leading to comovement between CIP deviations and spot FX rates.

A key implication of this extension is that CIP deviations are informative about the supply
shocks that global bond investors must absorb, which are otherwise difficult to observe. Thus
one might say that, seen through the lens of our model, the strong empirical relationship between
CIP deviations and spot exchange rates suggests that an important fraction of the variation in

2We discuss these effects in terms of U.S. short rate risk, but they apply symmetrically to euro short rate risk.
The supply of long-term euro bonds has the opposite effect on the EUR-USD exchange rate as that of U.S. bonds.



the latter is due to supply and demand factors, rather than the changes in macro fundamentals
that drive conventional models of exchange rate fluctuations.

Our paper is most closely related to work studying portfolio balance effects in currency markets
(e.g., Kouri [1976], Evans and Lyons [2002], Froot and Ramadorai [2005], Gabaix and Maggiori
[2015]). In these models, the disconnect between exchange rates and macroeconomic fundamen-
tals is explained by a disconnect between intermediaries in currency markets and the broader
economy. A related literature in international economics, including Farhi and Werning (2012)
and Itshoki and Mukhin (2021), features reduced-form “UIP shocks,” which similarly disconnect
exchange rates from macro fundamentals. Our paper is also closely related to papers studying
portfolio balance effects in bond markets| Our key contribution is to show that the structure of
financial intermediation, which links shocks hitting the intermediaries in FX markets to shocks
in the bond market, helps to explain several important empirical patterns.

The closest paper to ours is independent work by Gourinchas, Ray, and Vayanos (GRV 2022).
GRV also study a two-currency generalization of the Vayanos and Vila (2021) term structure
model. While we work in discrete time with two bonds in each currency, GRV work in continuous
time and consider a continuum of zero-coupon bonds in each currency. The tractability afforded
by our simpler model allows us to analytically derive a broader and more general set of results.
Despite these technical differences, our baseline results in Section 3 have close analogs in their
setting. Nevertheless, there are a number of important differences between the two papers, and
we believe they are complementary. GRV numerically estimate their model using data on the
EUR-USD exchange rate and the U.S. and German yield curves, show the estimated model
can match a variety of stylized facts, and use the estimated model to conduct numerical policy
experiments. In contrast, we theoretically explore the role of additional segmentation within the
global bond market and CIP violations. We also establish a number of empirical results that
support the key predictions of our baseline model. In summary, while the results in Section 3 are
similar in spirit to those in GRV, the results in Sections 2 and 4 are entirely distinct.

Our paper is also related to the vast literature taking a consumption-based, representative
agent approach to exchange rates[] In contrast to our quantity-driven, segmented-markets model,
these traditional asset pricing theories struggle to explain why supply shocks—e.g., central bank
QE policies—impact foreign exchange rates and other asset prices. As Woodford (2012) empha-
sizes, this is because a “mere reshuffling” of assets between households and the central bank does
not change how risk is priced in standard theories Furthermore, consumption-based models
generally imply different relationships between exchange rates and interest rates than our model.

3See, for example, Greenwood and Vayanos (2014), Hanson (2014), Hanson and Stein (2015), Malkhozov,
Mueller, Vedolin, and Venter (2016), Haddad and Sraer (2019), Hanson, Lucca, and Wright (2021), and Albagli
et al (2022).

*Contributions to this literature include Backus, Kehoe, and Kydland (1992), Backus and Smith (1993),
Backus, Foresi, and Telmer (2001), Verdelhan (2010), Colacito and Croce (2011, 2013), Bansal and Shaliastovich
(2012), Lustig, Roussanov, and Verdelhan (2014), Farhi and Gabaix (2016), and many others.

°If one consolidates a country’s fiscal authority and its central bank, then QE policies replace long-term gov-
ernment liabilities (bonds) with short-term ones (reserves) and are isomorphic to changing the maturity structure
of government debt. In standard frictionless models, Ricardian equivalence holds and the maturity structure of
government debt is irrelevant because it does not change the total amount of interest rate risk that is born by
households; it simply shifts risk from households’ asset holdings to their tax liabilities.



For instance, in consumption-based models, the expected return on the borrow-in-dollar lend-in-
euro FX trade is negatively correlated with the difference between U.S. and euro term premia.
By contrast, in our model, the correlation is positive.

The remainder of the paper is organized as follows. In Section 2, we present some empirical
evidence that motivates our theoretical analysis. Section 3 presents the baseline model. Section
4 extends our model in several ways to explore how the structure of financial intermediation
impacts foreign exchange rates, including by allowing for further segmentation within the global
bond and FX markets and for deviations from CIP. Section 5 concludes.

II Motivating evidence

To motivate our theoretical analysis, we present evidence for three related propositions. First,
exchange rates appear to be about as sensitive to changes in long-term interest rate differentials
as to changes in short-term interest rate differentials. Second, the component of long-term rate
differentials that matters for exchange rates appears to be a forecastable term premium differ-
ential, rather than the future path of short rates. Third, differences in term premia that move
exchange rates appear to be partially quantity-driven, as they are responsive to central bank
announcements about large-scale purchases of long-term bonds—i.e., Quantitative Easing.

The motivating evidence we develop here echoes findings from the recent literature exploring
linkages between foreign exchange and bond markets. Ang and Chen (2010), Lustig, Stathopou-
los, and Verdelhan (2019), Lloyd and Marin (2020), and Chernov and Creal (2022) find that
variables that predict long-term bond returns—e.g., the differences in term spreads between
currencies—are also useful for forecasting foreign exchange returns. The common finding, which
we reproduce below, is that expected returns are lower on currencies that appear to have higher
bond term premia. As pointed out by Lustig, Stathopoulos, and Verdelhan (2019), this joint
predictability of foreign exchange and bond returns implies that the returns on currency carry
trades are higher when they are implemented with shorter-term bonds than when implemented
with longer-term bonds. Second, Chinn and Meredith (2004, 2012), Bacchetta and van Win-
coop (2010), Boudoukh, Richardson, and Whitelaw (2016), Engel (2016), and Chernov and Creal
(2022) all find evidence that uncovered interest rate parity (UIP) holds better at long horizons
than at short horizons, a finding that is also tightly linked to the logic in Lustig, Stathopou-
los, and Verdelhan (2019). Third, Bauer and Neely (2014), Neely (2015), Swanson (2017), and
Bhattarai and Neely (2018) find that the U.S. dollar has tended to depreciate when the Federal
Reserve announces that it is going to expand its purchases of U.S. long-term bonds.

II.A Data

We obtain data on nominal exchange rates from Bloomberg. We obtain estimates of the nominal
zero-coupon government yield curve for each currency from each country’s central bank or finance
ministry. For example, our data on U.S. Treasury zero-coupon yields is from Giirkaynak, Sack,
and Wright (2007). Many of these datasets lack estimates for 3-month government bill yields, so
we obtain data on 3-month government bill yields from Global Financial Data. Section A.1 of



the Appendix provides additional details on our data sources and variable definitions.

Our theory is intended as a description of the exchange rates of major developed countries
that have floating (or lightly-managed) currencies, independently set their own monetary policy,
and play an important role in international financial markets. Thus, our analysis uses data for
six major currencies, each quoted versus the U.S. dollar: the Australian dollar (AUD), Canadian
dollar (CAD), Swiss franc (CHF), euro (EUR), British pound (GBP), and Japanese yen (JPY).

As discussed below, our theory characterizes the behavior of real yields and real exchange
rates. However, due to the lack of comprehensive international data on inflation-indexed bonds,
our motivating evidence here exploits data on nominal exchange rates and nominal bond yields,
introducing measurement error from the perspective of our theory. Thus, it makes sense to focus
on a period when inflation expectations were relatively stable and, hence, the use of nominal data
introduces little measurement error. Motivated by this consideration our baseline sample includes
monthly observations from 2001 and 2021. In addition, bond and foreign exchange markets have
arguably become more tightly integrated in recent decades, especially after the introduction of
the euro in 1999 (Schulz and Wolff [2008], Mylonidis and Kollias [2010], Ehrmann, Fratzscher,
and Rigobon [2011], Pozzi and Wolswijk [2012]). Since our theory hinges on the idea that bond
and foreign exchange markets are tightly integrated, this also argues in favor of looking at more
recent data. See Section A.2 of the Appendix for additional discussion.

II.B Contemporaneous movements in foreign exchange rates

Table 1 shows monthly panel regressions of the form
AH(]c,t - Ac +B- AH (iz,t - @t) +D- AH (yz,t - yt) + Ach,tv (1)

where Apgq.; is the quarterly (H = 3) or annual (H = 12) log change in currency ¢ vis-a-vis the
U.S. dollar, i;, and i; denote the foreign and U.S. short-term interest rates, and ., and y; are
the foreign and U.S. long-term interest rates. Positive values of Ayq.; denote appreciation of the
foreign currency versus the dollar. The regressions include currency fixed effects and thus exploit
within currency time-series variation. We measure the short-term rate as the 1-year government
bond yield and the long-term rate as the 10-year zero-coupon government bond yield.

Since these regressions use overlapping changes, the residuals will be mechanically autocorre-
lated within a given currency over time. Furthermore, the residuals may be contemporaneously
correlated across currencies at a given time. To draw proper inferences, we therefore compute
Driscoll-Kraay (1998) standard errors—i.e., the panel data analog of Newey-West (1987) time-
series standard errors. We assess statistical significance using the fixed-b asymptotic theory
of Kiefer and Vogelsang (2005) which yields more conservative p-values and has better finite-
sample properties than traditional Gaussian asymptotic theory. As detailed in Appendix A.3,
our standard errors allow for serial correlation up to a lag parameter that we choose using the
data-dependent approach of Lazarus, Lewis, Stock, and Watson (2018).

Columns (1) to (4) of Table 1 consider quarterly changes (H = 3 months). Column (1) shows
the well-known result, consistent with standard UIP logic, that the foreign currency appreciates



in response to an increase in the foreign-minus-dollar short rate differential. Column (2) shows a
more novel result: currencies appear to be nearly as responsive to changes in long-term interest
rates as they are to changes in short-term rates. Columns (3) and (4) present specifications that
break the rate differentials into their foreign and dollar components:

Apqey = Ae + By - Agiy, + By - Agiy + Dy - Agyl, + Do - Agyes + Apecy. (2)

Foreign and U.S. short-term rates enter with opposite signs in column (3). Similarly, the foreign
and U.S. long-term yields enter with coefficients of 4.94 and —3.98 in column (4), consistent with
the idea that changes in the term premium differential impact the exchange rate.

Columns (5) to (8) repeat this analysis using annual changes (H = 12 months). Compared
to the specifications using quarterly changes, the coefficient on the foreign-minus-U.S. short rate
differential is smaller in magnitude, but the coefficient on the long rate differential is larger.

The evidence in Table 1 suggests that exchange rates react to movements in bond term premia.
However, the change in the 10-year bond yield is not a very clean measure of changes in term
premia: it reflects both changes in term premia and changes in expected future short-term interest
rates. A potentially cleaner, albeit still imperfect, measure of movements in term premia is the
change in forward interest rates at a distant horizon. Distant forward rates reflect expectations
of short-term interest rates in the distant future plus a term premium component. A range of
evidence suggests that there is typically relatively little news about short-term rates in the distant
future, so changes in distant forward rates primarily reflect movements in term premia (Campbell
and Ammer [1993], Hanson and Stein [2015], and Cieslak and Pang [2021]). Moreover, there is
a large literature showing that forward rates strongly predict the excess returns on long-term
bonds (Fama and Bliss [1987], Cochrane and Piazzesi [2005]). Of course, movements in distant
forward rates may still reflect some news about future short rates, so changes in distant forward
rates are still an imperfect proxy for movements in bond term premia.

Table 2 presents regressions of the same form as in Table 1, but using distant forward rates (f;,
and f,) instead of long-term yields (y;;, and y;) as our proxy for term premia. The distant forward
we use is the 3-year 7-year forward government bond yield—i.e., the rate one can currently lock
in on a 3-year loan in seven years time. Compared with Table 1, the coefficients on the short-
rate variables are slightly larger in magnitude and the coefficients on the long-rate variables
are slightly smaller in magnitude, but the latter generally remain economically and statistically
significant. Thus, Table 2 reinforces the idea that changes in the term premium component of

long-term yields are associated with movements in foreign exchange rates.

II.C Forecasting bond and foreign exchange returns

In Tables 1 and 2, we provided suggestive evidence of a relationship between term premia and
exchange rates. We now provide more direct evidence, showing that forward rates forecast returns
on both long-term bonds and foreign currency. Table 3 starts with long-term bonds, running
monthly panel regressions of the form

TTy g — T g = Ac+ B (Zzt —it) +D- (fc*,t — ft) + Ecpmtins (3)
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and
m?g;t H— rey, g =Ac+Bi-ig, +By-iy+ Dy fi+ Do [ +€citin (4)

Here rx?j;_)t +x denotes H-month log returns on long-term bonds in country c in excess of the H-
month short-term interest rate in that country. rz} , , denotes H-month log excess returns on
long-term bonds in the U.S. As in Tables 1 and 2, the sample period runs from 2001 to 2021 and
includes six major currency pairs. (For simplicity, the short-term interest rates on the right-hand
side in these regressions are the 1-year government bond yields we have been using throughout.)
The table shows that distant forward rates strongly predict future excess bond returns at 3- and
12-month horizons. For example, column (6) shows that if the foreign distant forward rate is one
percentage point higher than the U.S. distant forward rate, then, over the next 12 months, excess
returns (in foreign currency) on long-term foreign bonds exceed excess returns (in dollars) on
long-term U.S. bonds by 4.31 percentage points on average. Similar results obtain at a quarterly
forecasting horizon.

In Table 4, we forecast excess returns on foreign currency investments. The specifications
parallel those in Table 3, but the dependent variable is now the log excess return on an investment

in foreign currency that borrows for H-months at the H-month U.S. short-term rate z',EH/ 12 and

x(H/12)

invests at the foreign short-term rate i, . In other words, the regressions take the form:
ng,t—nf-&-H =A.+B- (%’ét - it) +D- (fc*,t - ft) + EctmttHs (5)
and
sz,tﬂt+H = Ac + Bl . iii + BQ . ?:t + D1 . f:t + D2 . ft —+ Ec,thJrH; (6)

where r2l, .\ y = (Geprm — qer) + (H/12) - (i:,(tH/D) - ¢§H/12)) is the H-month excess return

(in dollars) on foreign currency c. The results in Table 4 are consistent with a risk premium
interpretation of our earlier results. For example, in column (6), an increase in the foreign-
minus-U.S. distant forward rate differential negatively predicts 12-month currency returns with
a coefficient of —3.59 (p-value < 0.01). This means that if the foreign distant forward rate rises
by one percentage point relative to the U.S. distant forward rate, investors can expect a 3.59
percentage point lower return on the trade that borrows in dollars and lends in foreign currency
over the next 3 months. This is consistent with our results in Tables 1 and 2. For instance,
Table 2 shows that increases in the foreign-minus-U.S. distant forward differential are associated
with a contemporaneous appreciation of the foreign currency. Table 4 shows that this increase in
distant forward rate differentials is associated with a subsequent depreciation of foreign currency
and thus low foreign currency returns.

Robustness In Section A.4 of the Appendix, we conduct a battery of robustness checks on
our baseline results in Tables 1, 2, 3, and 4. First, one might be concerned about our use of
overlapping changes and returns in our baseline regressions. Our results are quite similar if we
simply use non-overlapping H-month changes or returns.

Second, the panel data estimates in Tables 1, 2, 3, and 4 are a weighted average of currency-
level time-series estimates. While pooling data across currencies generates additional statistical



power and is standard practice in empirical asset pricing, it is natural to examine the results for
each of the six currencies separately. Broadly speaking, our results are strong for AUD, CHF,
GBP, EUR, and JPY when considered in isolation, but our results for the CAD are not.

Third, the EUR, GBP, and JPY are the three currencies that, alongside the USD, arguably
play the most significant role in international financial markets and, thus, most clearly satisfy
the conditions of our theory. Thus, it is comforting that our results are similar if we restrict our
sample to the EUR, GBP, and JPY.

Fourth, in light of the growing literature that emphasizes the special role of the U.S. dollar in
international financial markets, it is natural to ask whether our results are driven by the decision
to use the USD the base currency. The short answer is no: we obtain broadly similar results if,
instead of using the USD as the base currency, we use other currencies.

Finally, our baseline results focus on the 2001 to 2021 period. As explained above, we focus on
recent data for two main reasons. First, we are using data on nominal rates to test a theory that
makes predictions about real rates. As a result, we expect the patterns predicted by our theory to
emerge most strongly in nominal data during periods when expected inflation is stable. Second,
our theory hinges on the idea that bond and FX markets are tightly integrated and these markets
have arguably become more integrated in recent decades. However, neither consideration offers
a strong justification for beginning the analysis in precisely 2001: we do not think there was a
structural break in either the stability of inflation expectations or the integration of markets in
2000. The Appendix shows that our results hold over the longer 1994 to 2021 sample which is
as far back as we have zero-coupon yields for all currencies in our sample. To be sure, if we were
to extend our sample back to the 1980s or 1970s—which is possible for some of the currencies
we consider—our results become weaker. However, this is consistent with the notion that our
theory’s predictions should emerge less strongly during these earlier decades, especially when
working with nominal data.

II.D Central bank quantitative easing announcements

Our results so far are consistent with the idea that bond term premia play a role in driving the
foreign exchange risk premium. That said, our prior results do not tell us precisely what drives
bond term premia in the first place and, thus, do not necessarily single out a supply-and-demand
approach to risk premium determination. As a final piece of more direct motivating evidence
for our quantity-driven approach, we turn our attention to central bank announcements about
changes in the net supply of long-term bonds. As noted earlier, many studies have documented
the impact of central bank quantitative easing (QE) announcements on long-term bond yields
(Gagnon et al [2011], Krishnamurthy and Vissing-Jorgensen [2011], and Greenwood, Hanson, and
Vayanos [2016]). Drawing on these previous studies, we isolate periods in which there is news
about quantities, and show that changes in distant forward rates—our proxy for movements in
term premia—typically occur alongside changes in exchange rates at these times[]

6Even this evidence from QE announcements is not uniquely consistent with a term premium interpretation.
According to the “signaling” view, QFE also influences long-term rates through an expectations hypothesis channel
by signaling a central bank’s intention to keep short rates low for a long period of time. See, e.g., Eggertsson and
Woodford (2003), Bauer and Rudebusch (2014), and Bhattarai, Eggertsson, and Gafarov (2022).
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Figure 1 illustrates our approach. We construct a list of large-scale asset purchase announce-
ments by the U.S. Federal Reserve, the European Central Bank, the Bank of England, and the
Bank of Japan from 2008 to 2019[] Since the Reserve Bank of Australia, the Bank of Canada,
and the Swiss National Bank did not undertake large-scale purchases of long-term bonds from
2008 to 2019, we drop the AUD, CAD, and CHF and focus solely on the EUR, GBP, JPY, and
USD. To form our list of asset purchase announcement dates, we begin with Fawley and Newley’s
(2013) list of unconventional policy announcements by these four central banks. We update this
list through 2019 and focus on the subset of announcements that contain news about large-scale
purchases of long-term bonds (either sovereign or private-sector), including announcements about
“tapering” or “balance-sheet normalization”—a.k.a., “Quantitative Tightening.”

For an asset purchase announcement on date ¢, we show the appreciation of the foreign
exchange rate and the movement in foreign-minus-U.S. distant forward rates from day ¢ — 2 to
day t + 2. For the U.S. announcements, we plot the average appreciation of the USD relative to
EUR, GBP, and JPY versus the movement in U.S. long-term forward rates minus the average
movement in forward rates for the EUR, GBP, and JPY. For the other three currencies, we plot
their appreciation relative to the USD versus the movement in the local currency forward interest
rate minus the USD forward interest rate.

Consider the Fed’s announcement on March 18, 2009 that it would expand its purchases of
long-term U.S. bonds to $1.75 trillion from a previously announced $600 billion. As can be
seen in Figure 1, distant U.S. forward interest rates fell by more than 40 basis points relative to
those in other countries in the days surrounding this announcement, and the USD depreciated
by approximately 3 percent vis-a-vis the EUR, GBP, and JPY basket. Conversely, when the Fed
announced it was planning to slow or “taper” its long-term bond purchases on June 19, 2013,
distant U.S. forward rates rose by roughly 10 basis points relative to foreign forwards and the
USD appreciated by roughly 2.5 percent. For many announcements, neither distant forwards nor
currencies move by much, perhaps because the announcements were largely anticipated. However,
Figure 1 shows that announcements that were associated with significant relative movements in
distant forward rates were typically associated with sizable currency movements]

"We end this analysis in 2019, thereby excluding the asset purchase announcements associated with the onset of
the COVID-19 pandemic in March 2020, for two reasons. First, central banks began purchasing long-term bonds
in March 2020, in part, due to a desire to counteract the widespread institutional bond sales associated with the
COVID-induced “dash for cash.” Thus, the sign of the initial combined shock to net bond supply—institutional
sales minus central bank purchases—is unclear. Second, our theory emphasizes that exchange rates depend on
term premia differentials and, hence, the differential net supply of long-term bonds in different currencies. Since
the major central banks announced large-scale bond purchases in rapid succession (most in a few short days
following March 15, 2020), these events do not represent clean shocks to cross-currency differences in net supply.

8 A potential alternative interpretation is that long-term yields and foreign exchange rates both reflect move-
ments in convenience or safety premia. However, fluctuations in safety premia should generate the opposite
relationship between contemporaneous changes in foreign exchange rates and long-term yields. To see why, sup-
pose U.S. QE leads to a reduction in the supply of safe dollar assets. If the demand for safe assets is downward
sloping, QE should raise the dollar safety premium, pushing down long-term Treasury yields (Krishnamurthy and
Vissing-Jorgensen [2011, 2012]). If foreign investors derive greater convenience services from holding safe dollars
assets than U.S. investors, the decline in the supply of safe dollar assets should also lead the dollar to appreci-
ate against foreign currencies (Jiang, Krishnamurthy, and Lustig [2021a]). Alternately, if central bank reserves
are safer than the long-term assets the Fed is purchasing, then U.S. QE would expand the supply of dollar safe
assets which should push up long-term U.S. yields and lead the dollar to depreciate (Jiang, Krishnamurthy, and
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In Table 5, we focus our attention on these asset purchase announcement dates and estimate

the regressions akin to those in Table 2, namely:
AyGetro = A+ B- (A4iZt+2 - A4itt+2) +D- (A4fc*,t+2 - A4ft+2) + Ase i, (7)
and
AuGesyz = A+ Br-Dyity g+ By Dyiy, oy + D1 - Dy flio+ Do Ay fio+ Asccpra. (8)

Whereas in Tables 1 and 2 we studied quarterly and annual changes, here we restrict attention to
the 73 QE-related announcements in the U.S.; Eurozone, U.K., and Japan. The regressions have
more than 73 observations because for the 28 U.S. QE announcements, we include data points
for each of the euro, pound, and yen responses; this is similar to looking at the average change in
the dollar relative to these three currencies. To avoid double-counting events from a statistical
perspective, we cluster our standard errors by announcement date. As in Figure 1, Ayq. 42 is
the four-day change in the exchange rate, from two-days before the announcement to the close
two-days after; all other variables are measured over the same period.

Column (2) shows the main result. Both changes in short-term interest rate differentials and
changes in long-term forward rate differentials measured around QE-news dates are positively
related to movements in exchanges rates. Column (4) shows that the effects of foreign and U.S.
term premia on exchange rate movements are approximately symmetric and of opposite sign,
attracting coefficients of 4.3 and —3.6 respectively.

In sum, the evidence suggests that, not only is there a close connection between bond term
premia and FX risk premia, but both of these premia are partially driven by shocks to bond
supply. These stylized facts are the motivation for the model that we turn to next.

III Baseline model

Our baseline model generalizes the Vayanos and Vila (2021) term-structure model to a setting
with two currencies, say, the U.S. dollar and the euro. We consider a model with short- and long-
term bonds in domestic currency (dollars) and foreign currency (euros). There is an exogenously
given short-term interest rate in each currency. The key friction is that the global bond market
is partially segmented from the broader capital market: we assume the marginal investors in the
global bond market—whom we call “global bond investors”—are specialized investors. These
bond investors must absorb exogenous shocks to the supply and demand for long-term bonds
in both currencies, as well as shocks in the foreign exchange market. Since they are concerned
about the risk of near-term losses on their imperfectly diversified portfolios, specialists will only
absorb these shocks if the expected returns on bonds and FX adjust in response.

Lustig [2021b]). Either way, movements in the U.S. dollar safety premium should lead to a negative, not positive,
correlation between U.S. Treasury yields and the strength of dollar.
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III.A Model setup

The model is set in discrete time. To maintain tractability, we assume that asset prices (or yields)
and expected returns are linear functions of a vector of state variables. To model fixed income
assets, we (i) substitute log returns for simple returns throughout and (ii) use Campbell-Shiller
(1988) linearizations of log returns. We view (i) and (ii) as linearity-generating modelling devices
that do not qualitatively impact our conclusions.

II1.A.1 Financial assets

There are four assets in the model: short- and long-term bonds in both domestic (dollars) and
foreign (euros) currency. We then describe the foreign exchange market.

Short-term domestic bonds The log short-term interest rate in domestic currency between
time t and ¢ 4+ 1, denoted i;, is known at time ¢ and follows an exogenous stochastic process
described below. We assume short-term domestic bonds are available in perfectly elastic supply:
investors can borrow or lend any desired quantity in domestic currency from ¢ to t + 1 at ;.

Long-term domestic bonds The long-term domestic bond is a default-free perpetuity with
geometrically-declining payments. At time ¢, long-term domestic bonds are available in a given
net supply s/ which follows an exogenous stochastic process described below. As shown in Section
B.1 of the Appendix, the log return in domestic currency on long-term domestic bonds from ¢ to
t 4+ 1 is approximately:

1 ) )
7"32/+1 = 1_ 5yt 1 5yt+l =Yt — 1-35 (Y41 — Ye) 5 (9)

where y; is the log yield-to-maturity on domestic bonds, 6 € (0,1), and D = 1/(1 —§) is the
duration of the long-term bond—i.e., the sensitivity of the bond’s price to its yield. The parameter
d =1—1/D is governed by the rate at which the bond’s payments decline over time and a larger
0 corresponds to an economy with longer-term bonds. Naturally, the return on long-term bonds
is the sum of a “carry” component, 1;, that investors earn if yields do not change and a capital
gain component, — (6/ (1 —0)) (y;+1 — y¢), due to changes in yields.

Iterating Eq. @ forward and taking expectations, the domestic long-term yield can be
decomposed into an expectations hypothesis component and a term premium component:

yr = (1 =) Z;io 8 By i+ + Tﬁ?ﬂﬂ], (10)

where rz} | = r},; — 1, is the excess return on domestic long-term bonds over the domestic short
rate. In other words, rzf,, is the log excess return on the domestic “yield curve trade”—i.e.,
the trade that borrows short-term and lends long-term in domestic currency.

Short-term foreign bonds Short-term foreign bonds mirror short-term domestic bonds. The
log short-term riskless rate in foreign currency between time ¢ and ¢ + 1 is denoted ;.
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Long-term foreign bonds Long-term foreign bonds mirror long-term domestic bonds. Specif-
ically, long-term foreign bonds have the same duration D = 1/(1 —9) as long-term domestic
bonds and are available in an exogenous, time-varying net supply s¢*. The log return in foreign
currency on long-term foreign bonds is given by the analog of Eq. (9), and the log yield-to-
maturity on foreign bonds, y;, is given by the analog of Eq. . Tﬂ;‘g_l = T,‘?_:l — i; denotes the

excess return on the “yield curve trade” in foreign currency.

Foreign exchange Let (); denote the foreign exchange rate defined as units of domestic cur-
rency per unit of foreign currency—i.e., an investor can exchange foreign short-term bonds with
a market value of one unit in foreign currency for domestic short-term bonds with a market value
of @; in domestic currency. Thus, a rise in @); corresponds to an appreciation of the foreign
currency relative to the domestic currency. Let ¢; denote the log exchange rate.

Consider the excess return on foreign currency from time ¢ to t + 1—i.e., the FX trade that
borrows short-term in domestic currency and lends short-term in foreign currency. The log excess

return on foreign currency is approximately:

ngﬂ = (Qt+1 —q) + (if — it)~ (11)

Thus, the excess return on foreign currency is the sum of the interest rate differential, i} — i,
and the change in exchange rates, (¢;+1 — ¢;). Assuming the exchange rate is stationary with a
steady-state level of 0—i.e., that purchasing power parity holds in the long run, we can iterate

forward and take expectations to obtain:

G = D50 Bl — teng) — 12l 4], (12)

as in Froot and Ramadorai (2005). Thus, the exchange rate is the sum of a UIP component
and an FX risk premium component. Eq. is consistent with the evidence in Dahlquist and
Pénasse (2022) who show the level of the real exchange rate is a robust negative predictor of the
future excess returns on foreign exchangel

Real versus nominal rates Since our theory hinges on the comovement between exchange
rates and short-term interest rates, it makes sense to think of all of the interest rates in our

model as real interest rates and the exchange rate as the real exchange rate[l”] This is a key

90Qur assumption that the exchange rate is stationary is made purely for simplicity. Virtually all of our
results carry through trivially if the exchange rate is non-stationary. Specifically, we could instead assume that
G = ¢° + 3050 Bl — devg) — rafy ;] where ¢° = limp oo By [g47] follows an exogenous random walk
g1 = @;° + €goot41, E€go,i41 is orthogonal to the other shocks and Var; g t41] = agoo > 0. Relative to
the expressions we present, which assume agoo = 0, allowing for this random walk component of exchange rates
means that we simply need to add 02 > 0 to the fundamental component of V, = Var[rz{ ]. For instance, in
Proposition 1 we would replace V, = 2(1 — p) 02/ (1 — ¢;)* with V, = 02 +2(1 — p) o2/ (1 - ¢;)>.

10To see why, note that if short-term nominal interest rates move one-for-one with changes in expected inflation,
then news about future inflation will not impact real exchange rates. What is more, pure news about future
inflation will not lead to unexpected changes in nominal exchange rates and will only lead to expected future
movements in nominal exchange rates (see, e.g., Chapter 16 of Krugman, Obstfeld, and Melitz [2022]). Only news
about future short-term real rates leads to unexpected changes in both real and nominal exchange rates. Turning
to bonds, while both real and nominal long-term bonds are exposed to news about future short-term real rates,
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reason why we focused on data from 2001-2021 in the prior section: this was a period when
inflation expectations were firmly anchored and where movements in nominal interest rates largely

corresponded to movements in real rates.

ITI.A.2 Risk factors

Investors face two types of risk in our model: interest rate risk and supply risk. First, long-term
bonds and foreign exchange positions are exposed to interest rate risk. For example, both long-
term domestic bonds and foreign currency will suffer unexpected losses if short-term domestic
rates rise unexpectedly. Second, both long-term bonds and FX positions are exposed to supply
risk: stochastic supply shocks impact equilibrium bond yields and exchange rates, holding fixed
the expected future path of short rates.

Short-term interest rates We think of monetary policy as determining short-term rates
outside of the model. The domestic and foreign central banks independently pursue monetary
policy in their currencies by posting an interest rate and then elastically borrowing and lending
at that rate. Formally, we assume short-term interest rates in domestic and foreign currencies

follow exogenous and symmetric AR(1) processes with correlated shocks:

i1 = 1+ @;( —7) + €y, (13a)
it = T+ Qi — 1) Feir,, (13b)

where 7> 0, ¢; € (0,1), Var[e;,,,] = Varieix || = 07 >0, and p = Corrle;,,, i, ] € [0,1].

+1

Net bond supplies We assume the net supplies of long-term domestic bonds (s}) and long-
term foreign bonds (s{*) follow symmetric AR(1) processes. These net bond supplies are the
market value of long-term domestic and foreign bonds, both denominated in units of domestic
currency, that arbitrageurs must hold in equilibrium. Specifically, we assume:

S%—l—l = §+ gbsy(‘s? - gy) + 65?;+17 (14&)
S?—T—l = 5 =+ ¢sy<8?* - gy) + 65?11’ (14b)

where 3¢ > 0, ¢, € [0,1), and Vart[eng] = Va?"t[fsijj;l] =02, > O.B

only long-term nominal bonds are directly exposed to news about future inflation. These ideas are detailed in
Section B.2 of the Appendix where we extend our model to include shocks to both real interest rates and expected
inflation. The upshot is that the comovement patterns between long-term bonds and exchange rates that we
emphasize should be strongest when looking at real bonds. Similarly, the FX return predictability we emphasize
should be strongest when looking at real rates: looking at nominal rates simply adds measurement error to the
independent variables, biasing the results toward zero. Alternately, if one is forced to use data on nominal bonds
to test our theory (e.g., due to a lack of data on real bonds), then we would expect our predictions to emerge
most strongly in periods where inflation expectations are stable and the resulting measurement error is small.

Section B.3 of the Appendix explores the impact of relaxing our symmetry assumptions on short rates and
bond supply. Our baseline results carry through qualitatively so long as the asymmetries are moderate. However,
our model has qualitatively different implications for the comovement between foreign exchange and bond returns
if the short rate processes become highly asymmetric—e.g., if the foreign country’s short rate tends to move more
than one-for-one with the home country’s short rate. Thus, our baseline results apply most naturally to major
currencies whose central banks pursue an independent monetary policy.
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As in Vayanos and Vila (2021), these net bond supplies should be viewed as the gross supply
of long-term bonds minus the demand of any inelastic “preferred habitat” investors—i.e., they
reflect the combined supply and demand shocks that global bond investors must absorb in equi-
librium. This means that, from the vantage point of our global bond investors, there are two
potential sources of variation in the net supply of long-term bonds. First, there are true shocks
to the gross supply of long-term bonds that all private investors must collectively hold. These
gross supply shocks could either stem from the issuance of long-term government bonds or from
QE policies by central banks. Second, there are inelastic demand shocks from other unmodeled
investors that our global bond investors must accommodate. For instance, if pension fund or
insurance companies exogenously decided to sell their holdings of long-term bonds that would be
a positive net supply shock from the standpoint of our global bond investors["] With this broader
view of net supply in mind, it is plausible that there are sufficient fluctuations in net supply to

explain a meaningful fraction of the variation in both FX rates and long-term bonds yields.

Net FX supply We assume that global bond investors must engage in a borrow-domestic and
lend-foreign FX trade in time-varying market value (in domestic currency units) s to accommo-
date the opposing demand of other unmodeled agents. For example, if nonfinancial firms have
an inelastic demand to exchange foreign currency for domestic currency, global bond investors
must take the other side, going long foreign currency and short domestic currency. We assume:
(15)

q _ q
Sir1 = ¢s‘1$t + Esg+17

where Varfegq | = 02, > 0 and ¢, € [0,1). Of course, if we consider all agents in the global
economy, then foreign exchange must be in zero net supply: if some agent is exchanging dollars
for euros, then some other agent must be exchanging euros for dollars. However, the specialized
bond investors in our model are only a subset of all actors in global financial markets, so they
need not have zero foreign exchange exposure.

€

Collecting terms, let .11 = [e;,,,, €7, ,, € "and ¥ = Var, [e;11]. For simplicity,

y yr E 4 ]
St+1? “St41? TSt41

we assume the three supply shocks are independent of each other and of both short rate shocks.

ITI.A.3 Global bond investors

The global bond investors in our model are specialized investors who choose portfolios consisting
of short- and long-term bonds in the two currencies. They have mean-variance preferences over
next-period wealth with risk tolerance 7. Let d} (dY*) denote the market value of bond investors’
holdings of long-term domestic (foreign) bonds and let d] denote the value of investors’ position in
the borrow-domestic and lend-foreign FX trade, all denominated in domestic currency. Defining

12For recent work along these lines, see Greenwood and Vayanos (2010) for bond demand from pension funds,
Hanson (2014) and Malkhozov, Mueller, Vedolin, Venter (2016) for bond demand linked to mortgage hedging, and
Hanson, Lucca, and Wright (2021) for demand from extrapolative investors. Indeed, using their demand-system
approach, Koijen and Yogo (2020) argue that portfolio rebalancing by institutional investors can explain 50% to
60% of the variation in long-term bond yields and exchange rates.
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d, = [df, df", df) and rx¢ 1 = [rz},,, raf},, raf,,]’, investors choose their holdings to solve{|

1
rr}iax {d;Et [I'Xt_i_ﬂ - 2—d;VCLT‘t [rXt+1] dt} . (16)
t T
Thus, their demands must satisfy:
Et [I’XH_l] = 7'_1Vart [I’XH_l] dt. (17)

These preferences are similar to assuming that investors manage their overall risk exposure using
Value-at-Risk or other standard risk management techniques.

In practice, we associate the global bond investors in our model with market players such
as fixed-income divisions at global broker-dealers and global macro hedge funds. Relative to
more broadly diversified players in global capital markets, risk factors related to movements
in interest rates loom large for these imperfectly diversified investors. Indeed, the particular
form of segmentation that we assume is quite natural since both government bonds and foreign
exchange are interest-rate sensitive assets. Any specialized human capital, physical infrastructure,
or organizational infrastructure that is useful for managing interest-rate sensitive assets can be

readily applied to both bonds and foreign exchange[]

III.B Equilibrium

ITII.B.1 Conjecture and solution

We need to pin down three equilibrium prices: v, y;, and ¢;. To solve the model, we conjecture
that prices are linear functions of a 5 x 1 state vector z, = [iy,i},sY,s)",sf]. As shown in
the Appendix, a rational expectations equilibrium is a fixed point of an operator involving the
“price-impact” coefficients which govern how the supplies s; = [s{,s{", sf]" impact y;, y;, and
q:- Specifically, the market clearing condition d; = s; implicitly defines an operator which gives

the expected returns—and, hence, the price-impact coefficients—that will clear markets when

13Global bond investors solve irrespective of whether they are domestic- or foreign-based. This is because
we can represent an investor’s positions in any asset other than short-term bonds in her local currency as a linear
combination of three long-short trades: the yield curve trade in each currency and the FX trade. Assuming all
investors have the same risk tolerance in domestic currency terms (i.e., the risk tolerance of any foreign-based
investors is 7/Q; in foreign-currency terms) and hold the same beliefs, all will choose the same exposures to these
three trades in domestic currency terms regardless of where they are based.

1 QOur view is that, at its core, market segmentation is driven by the gains from investor specialization and the
informational frictions specialization engenders. Different assets are exposed to different kinds of economic risk
factors, and understanding different kinds of risk factors requires specialized human capital. While specialization is
valuable, it inevitably creates informational problems between specialized investors and outside capital providers.
Because of these informational problems, the specialized investors who are the marginal price setters in the
short-run are not fully diversified and have outsized economic exposures to the specific assets they intermediate.

A key implication of this human-capital-centric approach to market segmentation is that there is a crucial
distinction between the economic and statistical similarity of different risk factors. For example, U.S. and Japanese
short-term rates are not highly correlated, implying that U.S. and Japanese bonds face very different statistical
risks. However, the underlying human capital needed to analyze and manage short-rate risk is quite similar in
both currencies. As a result, global bond investors may have an edge in both bond markets even though the two
underlying short rates are far from perfectly correlated.
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investors believe the risk of holding assets is determined by some initial set of price-impact
coeflicients. A rational expectations equilibrium of our model is a fixed point of this operator.
In the absence of supply risk (aiy = agq = 0), this fixed-point problem is degenerate, and
there is a straightforward, unique equilibrium. However, when asset supply is stochastic, the
fixed-point problem is non-degenerate: the risk of holding assets depends on how prices react
to supply shocks. For example, if investors believe supply shocks will have a large impact on
prices, they perceive assets as being highly risky. As a result, investors will only absorb supply
shocks if they are compensated by large price declines and high future expected returns, making
the initial belief self-fulfilling. This logic means that (i) a linear equilibrium only exists when
investors’ risk tolerance 7 is sufficiently large relative to the volatility of supply shocks and (ii)
the model admits multiple equilibria. However, there is at most one equilibrium that is stable
in the sense that it is robust to a small perturbation in investors’ beliefs regarding equilibrium

price impact We focus on this unique stable equilibrium in our analysis.

II1.B.2 Equilibrium expected returns and prices

We now characterize equilibrium expected returns and prices. Market clearing implies that
d; = s;. Thus, using Eq. (I7), equilibrium expected returns must satisfy:

Et [I'Xt_;,_l] = T_IVaTt [I'Xt_;,_l] St = T_IVSt, (18)

where V = Var [rx;;1] is constant in equilibrium. Writing out Eq. and making use of the
symmetry between long-term domestic and foreign bonds in equations and , we have:

B [rat] = ~[Vy st 4+ Cuye -5t 4 Cyg 51 (192)
Ly [Tx%tjj;l] = 7_1_ [Cy*vy -] + Vi - s{" — Cyyq- s{] (19b)
B, [refin] =~ [Cpq- (51 = s1%) + Vo], (19¢)
where V, = Varfral ] = Varral},), V, = Varral,,], Cyp, = Covral,,,rai},], and
Cyq = Covyfray q,raf] = —Covyrali,,ral ,]. These variances and covariances are equilib-

rium objects: they depend both on shocks to short-term interest rates and on the equilibrium
price impact of supply shocks.

15 Equilibrium non-existence and multiplicity are common in models like ours where short-lived investors absorb
shocks to the supply of infinitely-lived assets. Consistent with Samuelson’s (1947) “correspondence principle,”
the unique stable equilibrium has comparative statics that accord with standard intuition. By contrast, the
comparative statics of the unstable equilibria are counterintuitive. For previous treatments of these issues, see
Spiegel (1998), Watanabe (2008), Banerjee (2011), and Greenwood, Hanson, and Liao (2018).
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Making use of Egs. and and the AR(1) dynamics for i, i}, sf, s¥*, and s{, we can
characterize equilibrium yields and the exchange rate. The long-term domestic yield is:

Expect‘LtiOIlb hypothesis

Steady-state term premium
7\

r{ = 5¢ (=1 } )T Gy -5 (20a)
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Time-varying term premium

the long-term foreign yield is:

Expectations hypothesis

Steady-state term premium
7\
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and the foreign exchange rate is

Uncovered interest rate parity FX risk premium
7\ o\

T L, (. 1 oo o1 ] )
u= {25 G-} {7 g G T e e

Egs. and say that long-term domestic and foreign yields are the sum of an expecta-
tions hypothesis component that reflects expected future short-term rates and a term premium
component that reflects expected future bond risk premia. The expectations hypothesis compo-
nent for domestic long-term bonds, for example, depends on the current deviation of short-term
domestic rates from their steady-state level (i, — 7) and the persistence of short-term rates (¢;).
Similarly, the domestic term premium depends on the current deviation of asset supplies from
their steady state levels and the persistence of those asset supplies. Eq. says that the
foreign exchange rate consists of a UIP term, reflecting expected future foreign-minus-domestic
short rate differentials, minus a risk-premium term that reflects expected future excess returns

on the borrow-domestic lend-foreign FX trade.

ITI1.B.3 Understanding equilibrium expected returns

We can understand expected returns in terms of exposures to the five risk factors in our model.

Formally, the time-¢ conditional expected return on any asset a € {y,y*, q} satisfies:

Eyfray ] = BiXis + BiXis ¢ + By Asvt + Bove Asve 1t + BraXsart, (21)

where, for factors f € {i,i*,s%,s%*, 57}, 3% is the constant loading of asset a’s returns on factor
innovation ey, , and Ay, is the time-varying equilibrium price of bearing €y, , risk. Formally, 5%
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is the coefficient on ¢y, , from a multivariate regression of —(rzf,; — Ey[rz{ ,]) on the innovations
to the five risk factors. For instance, long-term domestic bonds have a positive loading on ¢, ,
and no loading on & . At time t, the prices of domestic and foreign short-rate risk are:

Ao o= ot X, (84 ) (222)
Moo = 7075, (080 4+ BL) - 5], (220)

and, for f € {s¥, s¥*, s7}, the prices of supply risk are:

Ay = T_lafc . Za[ﬁ‘} - 8¢ (22c¢)

Expected returns can also be written using a conditional-CAPM-like representation. Letting
rayt = s;rx; denote the excess return on global bond investors’ portfolio from ¢ to ¢ 4 1, the
conditional expected return on any risky asset a € {y,y*, ¢} is:

a St
Covy {m%ﬂ? Txt+1]

E; [Txgﬂ] = - by [Txfil] (23)

Varrz;]
The expected return on each asset equals its conditional S with respect to the portfolio held
by bond investors times the conditional expected return on that portfolio. Relatedly, the sto-
chastic discount factor (SDF) that prices risky assets—i.e., the random variable m;; that satisfies
Erzg ] = —Covyraf,,, muy] for all a—is myyy = —ip—(rajt — Ey[rajt,])- (Eelrait )/ Varra),]).
In other words, “bad times” in our model—states of the world where m;; is unexpectedly high—
are states where the excess return on global bond investors’ portfolio (ra;%,) is unexpectedly low.

Eq. is superficially similar to the pricing condition that would obtain if the true
conditional-CAPM held in fully-integrated global capital markets. However, in our model, the
portfolio return that prices risky assets is the return on the portfolio held by specialized bond
investors. By contrast, in fully integrated markets, the portfolio return that prices all financial
assets is the market portfolio consisting of all global financial wealth.

If global bond investors’ portfolios were readily observable, Eq. would be directly testable.
Currently, however, there are (at least) two main hurdles to observing the portfolios of the
marginal intermediaries in the global bond market. First, we think that global macro hedge funds
play an important role in bond and FX markets. Data on these funds’ positions are unavailable
to the best of our knowledge. Second, some data is available on the portfolios of the large dealer
banks through the Federal Reserve’s Primary Dealer Statistical Release. However, this data only
covers primary dealers’ positions in cash securities, not derivatives. Conceptually, the relevant
object in our model is global bond investors’ total exposure to interest rate risk, whether it comes
through securities or derivatives. Given that intermediaries’ portfolios are not readily observable,
precisely quantifying the magnitude of the effects in our model is challenging. Thus, our main
goal in this paper is to trace out the qualitative implications of this quantity-driven view of bond

term premia and exchange rates['%]

16 Gourinchas, Ray, and Vayanos (2022) take a complementary approach. Treating the net supplies held by
global bond investors as unobservable, they estimate the unknown parameters of their model using an indirect
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III.C Bond term premia and exchange rates

The major payoff from our baseline model is that we are able to study the simultaneous de-
termination of domestic term premia, foreign term premia, and foreign exchange risk premia.
Specifically, we can ask how a shift in the supply on any of these three assets impacts the equi-
librium expected returns on the two other assets using Eq. .

III.C.1 Limiting case with no supply risk

Many of the core results of the model can be illustrated using the limiting case in which asset

supplies are constant over time, leaving only short rate risk—i.e., where 0%, = 0%, = 0.

Proposition 1 Equilibrium without supply shocks. If 02, = 02, =0 and p € (0,1), then

5\, 1 \? )
Vy, = (1_5@) Ji>0anqu—2(1_¢i> (1—-p)o; >0, (24a)

51,
> > 0. 24
o iog 70 )

5 2
Cyye = p(l_&b.) o7 >0 and C,,= (1 — p)

Thus, OE[rz}, ]/0s] = 77'Cy, is decreasing in the correlation between domestic and foreign

short rates, p, whereas OE,[rz;]/0s] = 771C, 4. is increasing in p.

Proof. All proofs are in the Appendix, which is available online here. =

Proposition (1| provides guidance about how shifts in long-term bond supply—e.g., due to QE
policies—should impact exchange rates and term premia. There are three key takeaways.

First, Proposition [I| shows that a shift in domestic bond supply impacts the domestic term
premium, the foreign term premium, and the FX risk premium. For example, suppose there is
an increase in the supply of dollar long-term bonds. This increase in dollar bond supply raises
the price of bearing dollar short-rate risk in Eq. , lifting the expected returns on the dollar
yield curve trade and long-term dollar yields as in Vayanos and Vila (2021). When dollar and
euro short rates are correlated (p > 0), the increase in dollar bond supply also raises the price of
euro-short rate risk in Eq. , pushing up the euro term premium and long-term euro yields.

Turning to exchange rates, Eq. shows that the borrow-in-dollars to lend-in-euros FX
trade is also exposed to dollar short-rate risk: the euro depreciates when dollar short rates rise
through the standard UIP channel. Because the price of bearing dollar short-rate rises following
an increase in the supply of dollar long-term bonds, the expected returns on the FX trade must
also rise. Thus, an increase in the supply of long-term dollar bonds leads the euro to depreciate;
it is then expected to appreciate going forward. More precisely, when p > 0, an increase in the
supply of long-term dollar bonds raises the prices of both dollar and euro short-rate risk per Egs.

inference aproach: they choose parameters to match a set of empirical statistics summarizing the volatilities of
and covariances between equilibrium prices. They estimate this model using monthly data on U.S. and German
bonds and the EUR-USD exchange rate from 1986 to 2021. They show that this estimated model can match a
range of stylized facts and use the model to conduct a set of numerical policy experiments. We believe their multi-
maturity model is a more natural setting for quantitative estimation of this sort. By contrast, the tractability of
our two-bond model means we are able to analytically derive a broader and more general set of qualitative results.
And, our simpler model is better suited to considering extensions as we do in Section 4 below.
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(22a) and (22b). As shown in Eq. (20c), the FX trade has offsetting exposures to dollar and
euro short rates. However, so long as p < 1, the increase in the supply of long-term dollar bonds

has a larger impact on the price of dollar short rate risk so 0E;[rz{,,|/9s{ = 77'C, 4 > 0.

Second, Proposition [I] shows that the effects of a shift in domestic bond supply depend on
the correlation p between domestic and foreign short-rates. When p is higher, the domestic bond
supply shift has a larger impact on the price of foreign short-rate risk. As a result, more of the
effect appears in long-term foreign yields and less shows up in the exchange rate. For instance,
U.S. short-term rates are more highly correlated with euro short rates than with Japanese yen
short rates. Thus, Proposition [I] suggests we should expect U.S. QE—a reduction in dollar bond
supply—to lead to a larger depreciation of the dollar versus the yen than versus the euro. At the
same time, U.S. QE should lead to a larger reduction in euro term premia than yen term premia.
Intuitively, if foreign and domestic short rates are highly correlated, the UIP component of the
exchange rate will not be very volatile; if domestic short rates rise, foreign short rates are also
likely to rise, leaving the UIP component of the exchange rate largely unchanged. This means
that the FX trade is not very exposed to interest rate risk and, therefore, its expected return
should not move much in response to bond supply shiftsE]

Corollary [I] details the limiting case where § — 1, and therefore the duration of long-term
bonds D =1/ (1 — 0) goes to infinity.

Corollary 1 Limit where the duration of long-term bonds becomes infinite. Suppose

02, = 0%, = 0 and consider the limit where § — 1. In this limit, we have

1 2
Vy= (W) 07 >0, Vy=2(1=p)Vy, Cyp = pV,, and Cyy = (1 = p) V,, (25)

so Vary [raf, + (raly, —raf,))] = Vo + 2V, — 2Cy 4 — AC, , = 0—i.e., the long-term FX carry
trade is riskless. Thus, long-term UIP must hold state-by-state and hence also in expectation (i.e.,
raf 4 (ralty —ral ) = By [rafy + (raly, —raf,))] =0). As aresult, OF,[ra},,]/0s] = 77V,
equals the sum of OE[rz,]/0s{ = 77 pV, and OE[ral ]/0s{ =771 (1 — p) V.

In the 6 — 1 limit where the duration of long-term bonds becomes infinite, the long-term FX
carry trade that borrows long-term in dollars and lends long-term in euros becomes riskless. As
a result, the return on the long-term carry trade must be zero by the absence of arbitrage—i.e.,
we must have lims_; [raf,, + (ra¥}, —raf, ;)] =0 state—by—state Even though long-term UIP
holds in this limit, our model still pins down the precise mix of equilibrium adjustments that
ensure it holds following a change in asset supply. For instance, suppose there is an increase
in dollar bond supply s{. This bond supply shock raises the term premium on long-term U.S.
bonds, E;[rzy ,]. Long-term UIP implies that some combination of the term premium on Euro

1T"We find some suggestive evidence in favor of this prediction in Section A.5 of the Appendix. Specifically, if we
add interaction terms involving an estimate of each currency’s p to the regressions in Tables 2 and 4, the coefficient
on the interaction with distant forward rates goes in the predicted direction and is marginally significant.

"If the exchange rate is stationary, the fact that lims_i Var [raf,, + (rafl, —ral, )] =
lims_1 By [raf , + (rafi, —rxf, ;)] = 0 still holds once we introduce stochastic supply shocks. Of course,
lims_1 Var, [raf,, + (rafi, —rx], ;)] > 0 if the exchange rate contains a random-walk component.
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bonds (E;[rzi;,]) and the FX premium (E;[rz} ;]) must adjust in response. What Corollary
shows is that the correlation between domestic and foreign short rates, p, governs whether the
adjustment comes through the foreign term premium or the FX risk premium. Specifically, when
the correlation p is higher, more of the adjustment comes through a rise in the foreign term
premium and less comes through a rise in the FX premium.

II1.C.2 Adding supply shocks

We now show that these results generalize once we add stochastic shocks to the net supplies of
domestic and foreign long-term bonds and to foreign exchange[l]

Proposition 2 Equilibrium with supply shocks. If0 < p < 1, 0%, > 0, 0%, > 0, then in
any stable equilibrium we have OF[rxf,,]/0s! = 771Cy, > 0. If in addition p > 0 and o2, = 0,
then in any stable equilibrium we have OEy([raz;]/0s! = 771Cy i > 0. Thus, by continuity of
the stable equilibrium in the model’s underlying parameters, we have OE,[rz;]/0s{ > 0 unless

foreign exchange supply shocks are volatile and p is near zero.

Proposition [2| shows that, once we allow supply to be stochastic, shifts in bond supply continue
to impact bond yields and foreign exchange rates as they did in Proposition [1| where supply was
fixed. Shifts in supply tend to amplify the comovement between long-term bonds and foreign
exchange that is attributable to shifts in short-term interest rates.

The exception is when FX supply shocks are volatile (o2, is large) and the correlation of short
rates p is low. Because FX supply shocks push domestic and foreign long-term yields in opposite
directions by Eq. , if these shocks are highly volatile they can result in a negative equilibrium
correlation between domestic and foreign bond returns, C), ., even if the underlying short rates
are positively correlated. However, in the empirically relevant case where p is meaningfully

positive, we have C, . > 0 and bond yields behave as in Proposition [I}

ITI1.C.3 Empirical implications of the baseline model

In Section 2, we presented evidence for three propositions. First, exchange rates appear to
be about as sensitive to changes in long-term interest rate differentials as they are to changes
in short-term interest rate differentials. Second, the component of long rate differentials that
matters for exchange rates appears to be a term premium differential. Third, the term premium
differentials that move exchange rates appear to be, at least in part, quantity-driven. Using our
baseline model, we can now formally motivate these empirical results. We can also match the
finding in Lustig, Stathopoulos, and Verdelhan (2019).

We begin with our third fact: the term premium differentials that move exchange rates are
partially quantity-driven. To see this, we focus for simplicity on the case where FX supply shocks
are small—i.e., the limit where s} = 0 and 0%, = 0. (The Appendix shows that a similar set of

19As shown in the Appendix, when o2, > 0 and o2, > 0, solving the model involves characterizing the stable
solution to a system of four quadratic equations in four unknowns. When o2, > 0 and 02, = 0, the model can be
solved analytically: we simply need to solve two quadratics and a linear equation.
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2

results obtains when o > 0 and s{ # 0.) In this case, the foreign exchange risk premium is

decreasing in the difference between foreign and domestic bond supply (s{* — s7),

<0

q -1 Yk y
By [rafy,] = [-77Cy) - (s17 = st), (26)

and the difference between foreign and domestic bond risk premia is increasing in s{* — s?:

>0
N
7z ~N

E, [rxfil — rmtyﬂ} = [7'_1 (V, — Cy,y*ﬂ (87" —8Y). (27)

Egs. and motivate our regressions examining QE announcement dates in Section .
In the context of the model, we think of a euro QE announcement as news indicating that the
supply of euro long-term bonds s!* will be low. Eq. shows that this decline in euro bond
supply should reduce euro term premia relative to dollar term premia. Eq. shows that this
decline in s/* should increase the risk premium on the borrow-in-dollar lend-in-euros FX trade,
leading the euro to depreciate relative to the dollar. By symmetry, U.S. QE announcements—i.e.,
news that s/ will be low—will have the opposite effects.

To understand our second fact, we combine Eqs. and . We find that the FX risk
premium is negatively related to the difference between foreign and domestic bond term premia:

<-1

~ 5 -~ *
E, [m’fH] = {—ﬁ} - B, [rwzjﬂ — 7"3:?“} ) (28)

Eq. motivates Table 4 in Section [lI] where we forecast foreign exchange returns using the
difference in (proxies for) foreign and domestic term premia. When euro bond supply is high, the
euro term premium is high and the risk premium on the borrow-in-dollars lend-in-euros FX trade
is low. Thus, the FX risk premium moves inversely with the foreign term premium. The same
argument applies to the domestic term premium with the opposite sign—the FX risk premium
moves proportionately with the domestic term premium.@

To understand our first fact, we combine Eq. and . The exchange rate reflects the
sum of expected (i) foreign-minus-domestic short rate differentials and (ii) foreign-minus-domestic
bond risk-premium differentials:

>1

o) % . C s o) *
qr = ijg Et[zt+j — dyg] + {#} ) ijo Et[mi/+j+1 - m?+j+1]- (29)
Y YY"

This result motivates Tables 1 and 2 where we regress changes in exchange rates on changes in
short rate differentials and changes in (proxies for) term premium differentials. When foreign

20The constant of proportionality in Eq. , —Clyq/ (Vy — Cy =), is less than —1 because foreign exchange
is effectively a “longer duration” asset than long-term bonds when § < 1. This fact follows from the expressions
in Eq. in the limit where 02, = 0%, = 0 and is proved in Section D.3 of the Appendix for the general case

2

2
where 0%,,0%, > 0.
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bond supply is high, the foreign term premium is high and the risk premium on the borrow-
at-home to lend-abroad FX trade is low. For investors to earn low returns on foreign currency,
foreign currency must be strong—q; must be high—and must be expected to depreciate.

Lastly, our model can match the otherwise puzzling finding in Lustig, Stathopoulos, and
Verdelhan (2019) that the return to the FX trade—conventionally implemented by borrowing
and lending short-term in different currencies—declines if one borrows long-term and lends long-
term. To see this, note that the return on a long-term FX trade that borrows long-term at
home to lend long-term abroad is just a combination of our three long-short returns. Specifically,
the return on this long-term FX trade equals (i) the return to borrowing long to lend short
domestically (—rxz,,), plus (ii) the return to borrowing short domestically to lend short in the
foreign currency (rzf,,), plus (iii) the return to borrowing short to lend long in the foreign
currency (rzj;,). Thus, the expected return on the long-term FX trade is:

€(0,1)

. T v, G
By [ral + (rafl, —ral )] = [1 — %1 By [ral,y] . (30)
y7q

Eq. shows that the expected return on the long-term FX trade is smaller in absolute
magnitude—and hence less volatile over time—than that on the standard short-term FX trade.
The intuition is that the long-term FX trade has offsetting exposures that reduce its riskiness
for global bond investors as compared to the standard FX trade. For instance, the standard FX
trade (rz},,) will suffer when there is an unexpected increase in domestic short rates. However,
borrowing long to lend short in domestic currency (i.e., —razy,;) will profit when there is an
unexpected rise in domestic short rates. Thus, the long-term FX trade is less exposed to interest
rate risk than the standard short-term FX trade. As a result, the expected return on the long-term
FX trade moves less than one-for-one with the return on the standard short-term FX tradel
We collect these four observations in the following proposition:

Proposition 3 Empirical implications. Suppose p € [0,1), 02, >0, and 0%, = 0. Then:

e The FX risk premium (E, [rxfﬂ] ) is decreasing in the difference in net long-term bond
supply between foreign and domestic currency (si* — s{). The difference between foreign
and domestic bond risk premia, E; [rali, — rz ], is increasing in s{" — s}.

o E, [ra},,] is negatively related to E; [ra}y, —raf,,].
e The foreign exchange rate (q;) is the sum of expected future foreign-minus-domestic short-

rate differentials and a term that is proportional to expected future foreign-minus-domestic
bond risk premium differentials.

e The expected return on the borrow-long-in-domestic to lend-long-in-foreign FX trade
(E, [rwf 1t (rxfﬁl — m:fﬂ)} ) is smaller in magnitude than that on the standard borrow-
short-in-domestic to lend-short-in-foreign FX trade, (E; [raf,,]).

21 This result goes through unchanged if we allow the exchange rate to be non-stationary by adding a random
walk component. Thus, the ability of our model to match the Lustig, Stathopoulos, and Verdelhan (2019) result
does not simply follow from our simplifying assumption that the exchange rate is stationary.
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This same logic which implies that bond supply shocks should impact FX risk premium also
implies that FX supply shocks should impact bond risk premium. For instance, suppose the
foreign central bank conducts a sterilized FX intervention to depress its currency, selling some of
its holdings of short-term foreign bonds to purchase short-term domestic bonds. By FX market
clearing, this FX intervention is associated with an increase in the net supply of foreign currency
that global bond investors must absorb—i.e., a rise in s{. Naturally, our model predicts that
this FX intervention will raise the risk premium on investments in foreign currency (E; [rxf +1] ),
leading foreign currency to depreciate versus the domestic currency. However, since C,, > 0,
our model also predicts that this FX intervention will lead to a decline in foreign term premia
and a rise in domestic term premia (see Egs. and (20D))). Some suggestive evidence in
favor of this prediction comes from Christensen and Krogstrup (2019) who find that Swiss term
premia fell in August 2011 when the Swiss National Bank first hinted that it might intervene in
FX markets to hold down the value of the franc.

III.D A unified approach to carry trade returns

In this section, we show that our model can deliver a unified explanation that links return
predictability in foreign exchange and long-term bond markets to the levels of domestic and
foreign short-term interest rates. For foreign exchange, Fama (1984) showed that the expected
return on the borrow-in-dollar to lend-in-euro FX trade is increasing in the euro-minus-dollar
short rate differential, i — ¢;, a well-known failure of UIP. For long-term bonds, Fama and Bliss
(1987) and Campbell and Shiller (1991) showed that the expected return on the borrow-short to
lend-long yield curve trade is increasing in the slope of the yield curve, y; — i;, a well-known and
highly robust failure of the expectations hypothesis of the term structure.

The baseline model we developed above does not generate either of these predictability results.
In our baseline model, shocks to short-term interest rates make foreign exchange and long-term
bonds risky investments for global bond investors. As a result, supply shocks impact the expected
excess returns on foreign exchange and long-term bonds. But the levels of domestic and foreign
short rates do not impact the relevant supplies and, hence, expected excess returns.

However, as detailed in Section B.4 of the Appendix, a straightforward extension of our model
can simultaneously match these two return predictability results: we simply need to assume that
the net supply of each risky asset is endogenously increasing its price. For instance, first assume
that global bond investors’ exposure to the FX trade is endogenously increasing in the spot
exchange rate due to balance-of-trade driven flows. The idea is that when the euro is strong,
U.S. net exports to Europe rise. This in turn creates higher demand from U.S. exporters to swap
the euros they receive from their European sales into dollars, which global bond investors must
accommodate.

This assumption, which is needed in Gabaix and Maggiori (2015) to match the Fama (1984)
result, naturally delivers the Campbell-Shiller (1991) result in our model for the yield curve
trades in both currencies. When the euro short rate is higher than the U.S. short rate, the euro
will be strong relative to the dollar by standard UIP logic. Trade flows then mean that global
bond investors must bear greater euro exposure to borrow-in-dollar lend-in-euro FX trade when
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the euro is strong. This raises the expected returns on that trade. As a result, the expected
return on the FX trade is increasing in the difference between euro and U.S. short rates as in
Fama (1984). This is the logic of Gabaix and Maggiori (2015). In our model, greater exposure to
borrow-in-dollar lend-in-euro FX trade means greater exposure to U.S. short rate risk, and thus
the equilibrium expected returns on the U.S. yield curve trade must simultaneously rise. At the
same time, the yield curve will be steeper in the U.S. than the euro area because U.S. short rates
are lower and expected to mean-revert. Thus, our model will also match Campbell and Shiller’s
(1991) finding that a steep yield curve predicts high excess returns on long-term bonds.

In this way, our model suggests that it is possible to theoretically “kill two birds with one
stone.” Specifically, the assumption that the supply of FX exposure is increasing in the exchange
rate, which delivers the Fama (1984) result for FX, simultaneously generates the Campbell-
Shiller (1991) result for bonds. Conversely, the assumption that the net supply of long-term
bonds is increasing in the bond price, which generates the Campbell-Shiller (1991) result for
bonds, simultaneously delivers the Fama (1984) result for FXF_ZI In practice, both of these supply-
driven mechanisms (and potentially other mechanisms as well) are likely needed to realistically
generate the observed magnitude of the Fama (1984) and Campbell-Shiller (1991) results. Our
more modest conclusion here is simply that the two supply-driven mechanisms are mutually

reinforcing.

III.E Relationship to consumption-based models

Our quantity-driven, segmented-markets model provides a unified way to understand term premia
and exchange rates. In Section B.5 of the Appendix, we compare our model’s implications with
those of frictionless, consumption-based asset pricing models. Our model is able to simultaneously
match many important stylized facts about long-term bonds and foreign exchange rates. By
contrast, leading consumption-based models struggle to simultaneously match these empirical
patterns in a unified way. The key driver of these differences is that our assumption that the
global bond and foreign exchange markets are partially segmented from financial markets more
broadly. In other words, “bad times” for the marginal investors in global bond markets need
not coincide with “bad times” for more broadly diversified investors or for the representative
households in, say, the U.S. and Europe.

IV Model extensions

In this section, we consider a series of extensions that explore how the introduction of additional
intermediation frictions alter the predictions of our baseline model.

22Relatedly, once we endogenize supply, changes in conventional monetary policy in the eurozone (i} ) will impact
U.S. term premia (E; [rmi’ +1]) and vice versa. As a result, the Friedman-Obstfeld-Taylor trilemma fails: foreign
monetary policy impacts domestic financial conditions (and vice versa) even though exchange rates are floating.
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IV.A Further segmenting the global bond market

In our first extension, we enrich the structure of intermediation in our model to capture two
significant, real-world features of global bond and FX markets. First, real-world markets feature
a variety of different investor types—each facing a different set of constraints—opening the door
for meaningful segmentation within global bond and FX markets. Second, real-world bond and
FX markets involve substantial trading flows between different investor types (Evans and Lyons
[2002] and Froot and Ramadorai [2005]).

We further segment the global bond market as in Gromb and Vayanos (2002), assuming some
bond investors cannot trade short- and long-term bonds in both currencies. A first take-away
is that with further segmentation exogenous bond supply shocks give rise to endogenous foreign
exchange trading flows that impact exchange rates. A second is that a small amount of additional
segmentation increases the impact of bond supply shocks on exchange rates.

Our extended model features four types of bond investors. All types have mean-variance
preferences over one-period-ahead wealth and a risk tolerance of 7 in domestic currency terms.
Types only differ in their ability to trade different assets. Specifically:

e Domestic bond specialists, present in mass pm, can only choose between short- and long-term
domestic bonds—i.e., they can only engage in the domestic yield curve trade.

e Foreign bond specialists, also present in mass pum, can only choose between short- and long-
term foreign bonds—i.e., they can only engage in the foreign yield curve trade.

o ['X specialists, present in mass p (1 — 27), can only choose between short-term domestic
and foreign bonds—i.e., they can only engage in the FX trade.

e Global bond investors, present in mass (1 — x1), can hold short- and long-term bonds in both
currencies and can engage in all three long-short trades.

We assume p € [0,1] and 7 € (0,1/2). Increasing the combined mass of specialist types, f,
is equivalent to introducing greater segmentation in the global bond market. Thus, our baseline
model corresponds to the limiting case where pn = 0. At the other extreme, markets are fully
segmented when p = 1. And, when p € (0,1) markets are partially segmented.

Our domestic bond specialists are reminiscent of the specialized bond investors in Vayanos and
Vila (2021) in the sense that their positions in long-term domestic bonds are a sufficient statistic
for the expected returns on the domestic yield curve trade. Our FX specialists are similar to the
FX intermediaries in Gabaix and Maggiori (2015): their FX positions are a sufficient statistic for
the expected returns on the FX trade. In practice, we associate the domestic and foreign bond
specialists with market participants who, for institutional reasons, exhibit significant home bias
and are essentially unwilling to substitute between bonds in different currencies.

In the Appendix, we derive the following results:

Proposition 4 Further segmenting the bond market. Suppose p € (0,1) and that fraction
1 of investors are specialists. We have the following results:
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(i.) Price impact. Suppose o2, = 0%, = 0. (a) Greater segmentation increases own-

market price impact. Formally, for any a € {y,y*,q}, O*Efrai.,]/0s¢du > 0. (b) Seg-
mentation has a hump-shaped effect on cross-market price impact. For any a, €
{y,y", q} and ag # a1, |OE,[raft,]/0s?| is hump-shaped function of p with |OE[ra{,]/0s;?
0 when = 0 and OE(raf},]/0s{®> = 0 when u = 1. (c) Greater segmentation in-
creases bond market-wide price tmpact. For any supply s; # 0, the expected return

on the global bond market portfolio raj | = sirx,y1 is increasing in p: OErz;,]/0p > 0.

(#.) Segmentation leads to endogenous trading flows. Suppose o2, > 0, 0%, > 0. For
any p € (0,1), a shock to the supply of any asset a € {y,y*, q} triggers trading in all assets

a’ # a between global bond investors and specialist investors.

Further segmenting the global bond market has three effects. First, as we increase u, there
is an “inefficient risk-sharing” effect because fewer investors can absorb a given supply shock.
This effect tends to increase the price impact of all supply shocks. Second, there is a “width-
of-the-pipe” effect because we increase the mass of specialist investors who do not alter their
demand for their asset in response to shocks in other markets. This effect tends to diminish
the impact of a supply shock in one market on prices in other markets because price impact is
only transmitted across markets by global bond investors—*“the pipe”—whose demands for each
asset are impacted by shocks to other markets. Finally, there is an “endogenous risk” effect. To
the extent that greater segmentation directly alters the price impact of supply shocks, greater
segmentation affects equilibrium return volatility, further altering equilibrium price impact.

Part (i) of Proposition {4| characterizes equilibrium price impact as a function of p in the
limit where supply risk Vanishes.@ In this limit, the endogenous risk effect disappears, leaving
only the inefficient risk-sharing and width-of-the-pipe effects. As we raise u, these two effects
always increase the impact of a supply shock in market a on expected returns in that market:
O*Eyfraf, ]1/0st0p > 0 for any a € {y,y*, ¢}. Cross-market price impact under partial segmenta-
tion is more complicated. Consider how the FX risk premium responds to domestic bond supply,
OE,[rxl 1]/0s!, as a function of . When there are only global bond investors (1 = 0), a shock to
domestic bond supply raises expected returns on the FX trade: 0E;[rz} ,]/0s{ > 0. This is the
key result from our baseline model. By contrast, when markets are fully segmented and there are
no global bond investors, bond supply shocks have no impact on FX—i.e., 0E;[raf ,]/0s{ = 0
when ¢ = 1. In between, p has a hump-shaped effect on cross-market price impact. This
hump-shape reflects the combination of the inefficient risk-sharing effect, which typically leads
OEy[rxl 1]/0s! to rise with 1 and dominates when p is near 0, and the width-of-the-pipe effect,
which typically leads 0F,[rzf,]/0s{ to fall with  and dominates when p is near 1.

When we introduce stochastic supply shocks, the endogenous risk effect comes into play. By
continuity of the stable equilibrium in the model’s underlying parameters, the results in part (i)

23To prove part (i) of the proposition and draw Figure 2, we assume there is some FX-specific fundamental risk.
Specifically, we assume limy_, o E; [gi47] = ¢7° follows a random walk ¢f¥; = ¢7° + 40 141 With Vary [ege 141] =
ogm > 0. If 0300 = 0, then in the absence of supply risk, FX is a redundant asset whose returns are a linear
combination of those on domestic and foreign bonds. However, if 02,,02, > 0, FX is not redundant and cross-

market impact is still hump-shaped.
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of Proposition 4| continue to hold when supply risk is small. More generally, the endogenous risk
effect typically amplifies the sum of the inefficient risk-sharing and width-of-the-pipe effects, so the
hump-shaped profile of }6’Et [raiiq]/0s;? } becomes more pronounced in the presence of supply risk.
In addition, when asset supply is stochastic, greater segmentation typically increases equilibrium
market volatility. Furthermore, the endogenous risk effect typically steepens the relationship
between segmentation y and the expected return on the global bond market portfolio ]

The results in Proposition [4] are illustrated in Figure 2. Panel A of Figure 2 plots the im-
pact of a domestic bond supply shock on expected returns as a function of pu. The plot shows
that, while OE,[rz}, ]/0s{ is always increasing in p, segmentation has a hump-shaped effect on
OEy[rxf, 1]/0s{. Unless p is near 1 and global bond markets are highly segmented, the effect
of bond supply shocks on foreign exchange exceeds that in our baseline model where p = 0.
Thus, one might conjecture that the impact of bond supply shocks on foreign exchange markets
has risen in recent decades because p has fallen over time. In other words, relative to earlier
periods where markets were highly segmented (u = 1), the global bond market has become more
integrated, raising 0Ey[rx{,,]/0s] (Mylonidis and Kollias [2010], Pozzi and Wolswijk [2012]).

The next two plots in Panel B of Figure 2 show the trading response to a unit domestic bond
supply shock as a function of y. When p € (0, 1), markets are partially segmented, global bond
investors and the three specialist types disagree on the appropriate compensation for bearing
factor risk exposure. Thus, as shown in part (ii) of Proposition , following a supply shock to any
one asset, global bond investors trade across markets to align—but not equalize—the way that
factor risk is priced in different markets. For instance, a shock to the supply of domestic bonds
leads to foreign exchange trading between global bond investors and FX specialists. Specifically,
following a positive shock to domestic bond supply, global bond investors want to increase their
exposure to domestic bonds and reduce their exposure to the FX trade. FX specialists must
take the other side, increasing their exposure to the FX trade. These endogenous FX trading
flows are associated with an increase in FX risk premia and a depreciation of foreign currency.
In this way, our extension with additional bond market segmentation endogenizes the kinds of
capital market driven FX flows considered in Gabaix and Maggiori (2015). Rather than being
exogenous quantities that specialist FX investors are required to absorb, these endogenous FX

flows are tied to supply-and-demand shocks for long-term bonds /|

IV.B Deviations from covered-interest-rate parity

Next, we combine our model with bank balance sheet constraints, which Du, Tepper, and Verdel-
han (2018) show are critical for explaining post-2008 violations of covered interest rate parity

(CIP). We show that doing so provides a simple and plausible explanation for the fact that CIP

24Formally, for any bond portfolio p; # 0 with returns Tyt | = Pirxe1, we typically have oV ar[rz}t  ]/0pu > 0.
When the endogenous risk effect is positive in this portfolio sense, then for any set of supply shocks s; # 0,
the expected return on the global bond market portfolio raj%, = sjrx;y; rises more steeply with p—i.e., the
endogenous risk effect raises dFE;[rz}! |]/0pu > 0.

25In Section C.2 of the Appendix, we show that similar results to Proposition 4| obtain if we instead add bond
investors who cannot hedge FX risk—i.e., investors who cannot separately manage the FX exposure resulting
from investments they make in non-local, long-term bonds.
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deviations co-move with spot exchange rates. This suggests that CIP deviations are informa-
tive about the supply shocks that global bond investors must absorb, which are otherwise very
difficult to observe.

To model deviations from CIP and their connection to spot FX rates, we first introduce 1-
period FX forward contracts which allow investors to lock in the next period’s exchange rate.
When CIP holds, the “cash” domestic short-term rate equals its “synthetic” counterpart, which
is obtained by investing in short-term foreign bonds and hedging the associated FX risk using
FX forwards. Since CIP violations imply the existence of riskless profits, CIP violations cannot
be explained by the limited investor risk-bearing capacity we assume in our baseline model. We
therefore make three changes to our baseline model. First, we split our global bond investors,
so half are domiciled in the domestic country and half are domiciled in the foreign country.
Second, we assume the only market participants who can engage in riskless CIP arbitrage trades—
borrowing at the synthetic domestic short rate to lend at the cash domestic short rate—are a
set of global banks who face non-risk-based balance sheet constraints. Third, we assume bond
investors must use FX forwards if they want to hedge the currency risk stemming from any
investments in non-local long-term bonds[’|

In this setting, we show that deviations from CIP co-move with spot exchange rates as re-
cently documented in Avdjiev, Du, Koch, and Shin (2019) and Jiang, Krishnamurthy, and Lustig
(2021a). The intuition is that bond supply shocks generate investor demand to hedge foreign
currency risk, which in turn generates demand for FX forward transactions. When banks accom-
modate this demand, they engage in riskless CIP arbitrage trades. These trades consume scarce
bank balance sheet capacity, so banks are only willing to accommodate FX forward demand if
they earn positive profits doing so—i.e., only if there are deviations from CIP.

To illustrate, suppose there is an increase in the supply of long-term domestic bonds. As
in our baseline model, this supply shock raises the domestic term premium and the FX risk
premium, leading domestic currency to appreciate. To take advantage of the elevated domestic
term premium, foreign bond investors want to buy long-term domestic bonds. They want do
so on an FX-hedged basis to isolate the elevated domestic term premium component of the
investment. This puts pressure on the market for FX forwards, generating deviations from CIP.
Thus, deviations from CIP are driven by supply-and-demand shocks in the global bond market.

Once we allow for CIP deviations, domestic investors acquire an endogenous comparative
advantage at absorbing domestic bond supply shocks relative to foreign investors. Intuitively,
domestic investors can hold long-term domestic bonds without bearing currency risk or paying
the costs of hedging currency risk with FX forwards, while foreign investors cannot. As a result,
the failure of CIP leads bond supply shocks to have a larger impact on bond risk premia and FX
risk premia than in our baseline model where CIP holds.

26This is equivalent to saying that bond investors cannot directly borrow (or obtain “cash” funding) in non-local
currency. Of course, they can convert their local currency to non-local currency in the spot FX market to purchase
non-local assets. But if they wish to obtain leverage in non-local currency, they must use “synthetic” funding
which is constructed by borrowing in local currency, converting the proceeds to non-local currency in the spot
market, and then forward selling non-local currency in the forward market.
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Forward foreign exchange rates Let FtQ denote the 1-period forward exchange rate at time
t—i.e., the amount of domestic currency per unit of foreign currency that investors can lock in at
t to exchange at t + 1. Once we introduce forwards, there are two ways to earn a riskless return
in domestic currency between ¢ and ¢ + 1. First, investors can hold short-term domestic bonds,
earning the gross “cash” rate of I;. Second, investors can convert domestic currency into 1/0Q);
units of foreign currency, invest that foreign currency in short-term foreign bonds at rate I}, and
enter into an forward contact to exchange foreign for domestic currency at ¢ + 1, obtaining the
gross “synthetic” domestic rate of Fi'I;/Q;. Under CIP, the cash ([;) and synthetic (F!I;/Q;)
domestic short rates must be equal, implying F = Q,I;/I; or f = q, — (i} — i;) in logs.
By contrast, if CIP fails, the “cross-currency basis”, 25, given by

ay? =iy — (if + f1 — ) (31)

is nonzero. The cross-currency basis, i, is the return on a riskless CIP arbitrage trade that
borrows short-term in domestic currency on a synthetic basis at rate (if + f — ¢;) and lends
short-term in domestic currency on a cash basis at rate 7;. Alternately, we have:

fl == (i — i) — 2™ (32)
Thus, xfip is positive when the forward FX rate is lower than it would be if CIP held.

Positions involving FX forwards We introduce three positions that involve FX forwards.

o Forward FX investments: The excess return in domestic currency on a position in foreign

currency that is obtained through a forward purchase of foreign currency is:

Qo1 — f1 = [(qer1 — q0) + (if — )] + 27 = TTi ) + g, (33)

which follows from Eq. and rzf,; = (@41 — @) + (if —4). A forward investment
in foreign currency is equivalent to “stapling” together a standard FX trade, which earns
raf,, and a long position in the CIP arbitrage trade, which earns z;”. Using FX forwards
in this way is a synthetic way of obtaining funding or leverage for a standard FX trade.
An investor in FX uses little of their own capital up-front when they use forwards, just as

they use little of their own capital up-front when they use leverage.

In our baseline model where CIP held, it did not matter where our global bond investors
were domiciled. However, once CIP fails, investor domiciles matters. For instance, movements
in the cross-currency basis change the attractiveness of investing in long-term foreign bonds for
domestic bond investors because they must either (i) not hedge the FX risk stemming from their
foreign bond holdings or (ii) hedge this risk at cost of 2¢”. Thus, we must distinguish between
foreign and domestic investors when considering FX-hedged investments in long-term bonds.

o F'X-hedged investments in long-term foreign bonds by domestic investors: To obtain this
return from ¢ to ¢ + 1, a domestic investor exchanges domestic for foreign currency in the
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spot market at time ¢, invests that foreign currency in long-term foreign bonds from ¢ to
t + 1, and then exchanges foreign for domestic currency at ¢ + 1 at the pre-determined
forward rate FtQ. The log excess return on this position is approximately:

(rfey + ff = ) — i = rafey — i, (34)

which follows from Eq. and rxfg’;l = rfjrl —4y. Thus, an FX-hedged investment in
long-term foreign bonds is akin to “stapling” together the foreign yield-curve trade, which
earns rz}t,, and a short position in the CIP arbitrage trade, which earns —a;”. Using
forwards to hedge FX risk in this way is a way of converting domestic currency funding
into foreign currency funding”"|

o FX-hedged investments in long-term domestic bonds by foreign investors: Symmetrically,
the log excess return foreign investors earn buying domestic long-term bonds and hedging
the FX risk is approximately:

(7"3+1 +q — ff) — iy =rafy + g (35)

This expression is consistent with recent evidence on from Tabova and Warnock (2021) who
show that foreign holdings of Treasuries tend to rise when the CIP basis () is high.

Investor types We assume half of all bond investors are domiciled in the domestic country
and half are domiciled in the foreign country. Both domestic and foreign investors have mean-
variance preferences over one-period-ahead wealth and a risk tolerance of 7 in domestic currency
terms. Investors differ only in terms of the returns they can earn because of CIP violations.
Domestic bond investors are present in mass 1/2. They can obtain a riskless return of i, from
t tot+1. They can also (i) buy long-term domestic bonds, earning an excess return of rz, ; (ii)

take FX-hedged positions in long-term foreign bonds, generating an excess return of rxf_?l — xfp ;

and (iii) make forward investments in foreign currency, earning an excess return of ray, ; + ;.

.. y y* cip q cipr 28

In effect, domestic investors only have access to excess returns [rzy,,, ray,; — ", raf | + "] l

Foreign bond investors are present in mass 1/2 and are the mirror image of domestic investors,
. y cip y* q cipyr
with access to excess returns [rz; 1T T, T Xy |

While domestic and foreign bond investors may transact in FX forwards, they cannot engage

in the riskless CIP arbitrage trade in isolation. To the extent these investors transact in FX

forwards, they “staple” the returns on a riskless CIP arbitrage trade together with those on

other risky trades. This assumption is crucial for preventing bond investors, who are risk averse

but are not subject to other constraints, from arbitraging away deviations from CIP. This is

2TFX-hedged positions in foreign risky assets do not completely eliminate the exchange rate risk that investors
must bear because the size of the hedge cannot be made contingent on the foreign asset’s subsequent return.
Thus, the full FX-hedged return includes a second-order interaction between the local currency excess return on
the foreign asset and the excess return on foreign currency. For simplicity, we omit this second-order term, which
converges to a constant when investors continuously rebalance their hedges, from our analysis.

28Domestic investors can make unhedged investments in long-term foreign bonds. By combining FX-hedged

investments in long-term foreign bonds with forward FX investments, they earn rxi’:_l +raf, ; which is independent

of 2", However, if they want FX-hedged exposure to long-term foreign bonds, they must pay 2.
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equivalent to assuming that bond investors cannot obtain leverage in non-local currency; they
can only obtain synthetic non-local currency funding, which embeds a spread (a:fip ) that reflects
banks’ balance sheet costs.

We assume the only players who can engage in the riskless CIP arbitrage are a set of balance-
sheet constrained banks. These banks choose the value of their positions in the CIP arbitrage
trade, dg’;, to solve max eir {x?pdf;{; — (k/2) (dg’{;)Z}, where k > 0. Here (k/2) (dg’{;)2 captures
non-risk-based balance sheet costs faced by banks. These costs arise because equity capital is
costly and banks are subject to non-risk-based equity capital requirements. Thus, banks take a
position in the CIP arbitrage trade equal to d‘;ﬁ = Kk 1gSP,

These assumptions are purposely stark and serve to highlight the key mechanisms. In par-
ticular, our results would be qualitatively unchanged if some bond investors could engage in the
CIP arbitrage trade in limited size. Similarly, we are assuming that banks have zero risk-bearing
capacity, so that anytime they transact in the forward market, it is as part of a CIP arbitrage
trade. However, we would obtain qualitatively similar results if we assumed that banks had finite
risk-bearing capacity and thus could also take on risky FX positions.

Market equilibrium We need to clear four markets at time ¢: the markets for (i) long-term
domestic bonds; (ii) long-term foreign bonds; (iii) forward FX exposure, which we assume is in
net supply s{; and (iv) the CIP arbitrage tra,deF_g] Because forwards and the CIP arbitrage trade
span the spot market, (iii) and (iv) are equivalent to clearing the forward and spot FX markets.

To clear the market for forward FX exposure at time ¢, investors must be willing to make
a forward FX investment with a domestic notional value of s{. Turning to the CIP arbitrage
market, recall that the CIP arbitrage trade exchanges currency at the time ¢ spot rate and then
reverses that exchange at ¢ + 1 at the forward FX rate ftQ. For simplicity, we assume that the
CIP arbitrage trade is in zero net supply (sfip = 0), implying that banks must take the opposite
side of bond investors’ trades.

Proposition 5 Allowing for CIP deviations. Consider the extended model where the banks

are potentially balance-sheet constrained. We have the following results:

e [In the limiting case where banks are not balance-sheet constrained—i.e., where k — 0, CIP

holds (x5 — 0) and the extended model converges to the baseline model in Section 3.

29To clearly separate the amount of risky FX exposure and the amount of balance-sheet intensive riskless funding
that bond investors and banks must intermediate, we assume here that s is the net supply of risky FX exposure

on a forward basis. Since bond investors can accommodate shocks to the supply of forward FX exposure without

using scarce bank balance sheet capacity, s! does not impact z5”. By contrast, if s/ were instead the supply of

risky FX exposure on a spot basis, then a rise in s{ would be associated with a decline in z;"?.
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e [f banks are balance-sheet constrained (k > 0), we have

£, [r:cgﬂ} = 7! (Vy st 4+ Cyyu st + Cyy- st — :cfip/2, (36a)
E, [rxfil} = 7! (Cyys - 57+ V- s —Cyq- st + xfip/2, (36b)
Blrota] = 7 Coa (50— 1) +Vyosl] = i, (360
, Vv, +C
o T (g, 36d
‘rt ,i2 <% + Cy,y*) + TR (St St ) ( )
20

e Bond supply shocks s{ and s}* push Eirz{ ;] and 25 in opposite directions; as a re-
sult, these shocks push q, and xS in the same direction. Indeed, when there are no FX
supply shocks, we have E; [rz{,,] = —K, (E; [ra{{,] — Ey [ra},1]) and 2{" = K, -
(Et [rxfil] — B [rmi/ﬂ}), where K, and K., are positive constants given in the Appendiz.

o A rise in bank balance-sheet costs raises the impact of domestic bond supply shocks on domes-
tic bond risk premia and FX risk premia (9*Ey[rz},]/0s{0k > 0, O*Ey[rz, ]/0s{0k > 0),
but reduces the impact these shocks on foreign bond risk premia (9°Ey[rx},]/0s{0k < 0).

In the limiting case where banks balance-sheet costs vanish (k — 0), CIP holds, and equilib-
rium bond yields and exchange rates behave exactly as they did in the baseline model in Section
I This limit arguably approximates the pre-2008 era, when CIP held and banks did not face
binding non-risk-based equity capital constraints.

Next, consider the case where bank balance sheet costs are positive (k > 0). In this case,
risk premia are given by Eq. 1} and the cross-currency basis a:fip is given by Eq. . To
understand the intuition for Eq. , suppose there is an increase in the supply of long-term
domestic bonds, s{. As in our baseline model, this supply shock raises the domestic term premium
and the FX risk premium, leading domestic currency to appreciate against foreign. Foreign bond
investors then want to buy long-term domestic bonds, but they want to hedge the associated
FX risk to isolate the elevated domestic term premium. Hedging the FX risk involves forward
selling domestic currency. Because banks are balance-sheet constrained, banks are only willing
to accommodate investor demand for FX hedges if domestic currency is weaker than CIP would
imply in the forward market, meaning that the forward exchange rate f rises and the basis z{”
declines. Equivalently, the domestic bond supply shock boosts foreign bond investors’ demand
for short-term synthetic funding in domestic currency. Since banks are balance-sheet constrained,
this shift in funding demand pushes up the synthetic domestic short rate (if + f — ¢;) relative
to its cash counterpart (i;), thereby driving down the basis.

Egs. and show that bond supply shocks (s¥ or s¥*) push z5” and E, [rzf,] in
opposite directions. Thus, these supply shocks induce a positive time-series correlation between
the basis x,fip and the spot exchange rate ¢;, consistent with the recent findings of Avdjiev,
Du, Koch, and Shin (2019) and Jiang, Krishnamurthy, and Lustig (2021a). Intuitively, in our
model, demand to buy domestic currency in the spot market, which drives down ¢, is linked with
hedging demand to sell domestic currency in the forward market, which drives down a:fip . Since
risk premia are not directly observable but CIP deviations are, the CIP basis is an informative
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signal about the underlying supply-and-demand shocks that drive UIP failures. Relatedly, our
model suggests that the CIP basis should be higher when foreign term premia are higher—i.e., we
have (" = K, (E; [ra{{;] — E; [ra},;]) when there are no FX supply shocks. This prediction
is loosely consistent with the evidence in Du, Tepper, and Verdelhan (2018) who find that CIP
bases are increasing in the level of foreign interest rates, both in the cross-section of currencies
and in the time-series for a given currency.

Seen through the lens of our model, the strong correlation between CIP bases and spot FX
rates suggests that a important fraction of the variation in FX rates may be due to supply-and-
demand shocks, as opposed to the macro fundamentals that drive FX rates in more conventional
models. The CIP basis has a fundamental value of zero, so its movements can only reflect supply-
and-demand imbalances. Thus, if the basis moves strongly with the level of the currency, this
would seem to indicate that the latter is also heavily influenced by these same imbalances. In
any event, this is the mechanism in our model.

Finally, our model suggests that allowing for CIP deviations (x > 0) places foreign investors
at an endogenous comparative disadvantage relative to domestic investors when it comes to
absorbing domestic supply shocks (and vice versa). If they hold long-term domestic bonds,
foreigners must either bear currency risk or pay the cost (—xfip ) of hedging the associated currency
risk with FX forwards. Since these FX hedging costs rise with the level of domestic bond supply
(sY), foreigners play a smaller role than domestic investors in absorbing domestic bond supply
shocks. As a result, a rise in bank balance sheet costs (k) raises the impact of domestic bond
supply shocks on domestic term premia (E; [rzy,,]) and FX premia (E; [rz{,,]) but reduces the

impact of domestic bond supply shocks on foreign term premia (F; [rmi’il})

IV.C Interest-rate insensitive assets

In a final extension, we introduce interest-rate insensitive assets that are not exposed to move-
ments in interest rates. In our baseline model, shocks to the supply-and-demand for rate-
insensitive assets have no effect on exchange rates because they do not change the amount of
interest rate risk borne by global bond investors. However, in the presence of deviations from
CIP, these shocks can impact exchange rates because they generate demands for different curren-
cies, which global bond investors must accommodate. In other words, the CIP deviations that
have emerged since 2008 significantly increase the set of capital market flows that can impact
exchange rates. See Section C.3 of the Appendix.

V Conclusion

300ur results here connect to those in He, Nagel, and Song (2021). Motivated by the sharp rise in long-term
interest rates and the rise in Treasury yields relative to those on overnight-index swaps (OIS) during the COVID-
19-induced “dash for cash” in March 2020, these authors add non-risk-based dealer balance sheet costs to an
otherwise standard Vayanos and Vila (2021) term structure model. Shocks to the net supply of long-term bonds
push term premia and the spread between Treasury and OIS yields—a failure of the Law of One Price that reflects
dealer balance-sheet costs—in the same direction. And, the presence of these balance sheet costs steepens the
aggregate demand curve for interest rate risk, amplifying the impact of bond supply shocks on term premia.
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We develop a workhorse model in which the limited risk-bearing capacity of global bond market
investors plays a central role in determining foreign exchange rates. In our baseline model,
specialized bond investors must accommodate supply-and-demand shocks in the markets for
foreign and domestic long-term bonds as well as in the foreign exchange market.

This simple model captures many features of the data, including (i) correlations between
realized excess returns on foreign currency and long-term bonds, (ii) the relationship between
the foreign exchange risk premium and bond term premia, (iii) the effects of quantitative easing
policies on exchange rates, and (iv) the fact that currency trades are more profitable when
implemented using short-term bonds than using long-term bonds.

We then enrich the structure of intermediation in our model in two ways. First, we further
segment the bond market, introducing investors who cannot flexibly trade bonds of any maturity
in both currencies. This segmentation leads to endogenous trading flows in currency markets that
are associated with movements in the exchange rate. Second, we add balance-sheet constrained
banks, which allow us to study CIP deviations. Overall, our paper shows that the structure
of financial intermediation in bond and currency markets helps explain a number of empirical
regularities in these markets.

From a policy perspective, our model shows that the ability to influence exchange rates—
and hence presumably trade flows—remains a potentially important channel for monetary policy
transmission even when central banks are pinned against the zero lower bound (ZLB) and must
rely on quantitative easing to provide monetary accommodation. Indeed, our analysis leaves open
the interesting possibility that when other conventional channels of transmission are compromised
by low rates (Brunnermeier and Koby [2019]), this QE-exchange-rate channel may become a
relatively more important part of the overall monetary transmission mechanism. If so, and given
the zero-sum nature of this channel across countries, arguments for monetary-policy coordination
(Rajan [2016]) may gather more force near the ZLB. To be clear, neither our model nor any of
the evidence that we have presented gives decisive guidance on this point. But the model does
provide a framework in which questions of this sort can be pursued more rigorously.

HARVARD BUSINESS SCHOOL
HARVARD BUSINESS SCHOOL
HARVARD UNIVERSITY

HARVARD BUSINESS SCHOOL

36



References

Albagli, E., Ceballos L., Claro, S., & Romero D. 2022. UIP: Insights from event studies. Central Bank
of Chile working paper.

Ang, A. & J. Chen. 2010. Yield curve predictors of foreign exchange returns. Columbia University
working paper.

Avdjiev, S., C. Koch, W. Du, & H. Shin. 2019. The dollar, bank leverage and deviations from covered
interest rate parity. American Economic Review: Insights, 1(2): 193-208.

Bacchetta, P. & E van Wincoop. 2010. Infrequent portfolio decisions: A solution to the forward discount
puzzle. American Economic Review, 100(3): 870-904.

Backus, D. K., P. Kehoe, & F. Kydland. 1992. Dynamics of the trade balance and the terms of trade:
The S-curve. NBER Working Paper No. 4242.

Backus, D. K., & G. W. Smith. 1993. Consumption and real exchange rates in dynamic economies with
non-traded goods. Journal of International Economics, 35(3-4): 297-316.

Backus, D. K., S. Foresi, & C. I. Telmer. 2001. Affine term structure models and the forward premium
anomaly. Journal of Finance, 56(1), 279-304.

Banerjee, S. 2011. Learning from prices and the dispersion in beliefs Review of Financial Studies,24(9):
3025-3068.

Bansal, R., & I. Shaliastovich. 2012. A long-run risks explanation of predictability puzzles in bond and
currency markets. Review of Financial Studies, 26(1): 1-33.

Bauer, M. D., & C. J. Neely. 2014. International channels of the Fed’s unconventional monetary policy.
Journal of International Money and Finance, 44: 24-46.

Bauer, M. D., & G. Rudebush, 2014. The signaling channel for Federal Reserve bond purchases. Journal
of International Central Banking, 10(3): 233-290.

Bhattarai, S., Eggertsson, G., & B., Gafarov. 2022. Time Consistency and the Duration of Government
Debt: A Model of Quantitative Easing. Review of Economic Studies, forthcoming.

Bhattarai, S., & C. J. Neely. 2018. An analysis of the literature on international unconventional monetary
policy, FRB St. Louis Working Paper.

Boudoukh, J., M. Richardson, & R. Whitelaw. 2016. New evidence on the forward premium puzzle.
Journal of Financial and Quantitative Analysis, 51(3): 875-897.

Brunnermeier, M., & Y. Koby. 2019. The reversal interest rate. Princeton University working paper.

Campbell, J. Y., & J. Ammer. 1993. What moves the stock and bond markets? A variance decomposition
for long-term asset returns. Journal of Finance, 48(1): 3-37.

Campbell, J. Y., & R. J. Shiller. 1988. Stock prices, earnings, and expected dividends. Journal of Finance
43:661-76.

Campbell, J.Y. & R. J. Shiller. 1991. Yield spreads and interest rate movements: A bird’s eye view,
Review of Economic Studies 58, 495-514.

37



Chernov, M. & D. Creal. 2022. International yield curves and currency puzzles. Journal of Finance,
forthcoming.

Chinn, M., & G. Meredith. 2004. Monetary policy and long-horizon uncovered interest parity. IMF staff
papers, 51(3): 409-430.

Christensen, H. & S. Krogstrup. 2019. Transmission of Quantitative Easing: The role of central bank
reserves. The Economic Journal, 129(617): 249-272.

Cieslak, A., & H. Pang. 2021. Common shocks in stocks and bonds. Journal of Financial Economics,
142(2): 880-904.

Cochrane, J. H., & M. Piazzesi. 2005. Bond risk premia. The American Economic Review, 95(1): 138-
160.

Colacito, R., & M. M. Croce. 2011. Risks for the long run and the real exchange rate. Journal of Political
Economy, 119(1): 153-181.

Colacito, R., & M. M. Croce. 2013. International asset pricing with recursive preferences. Journal of
Finance, 68(6): 2651-2686.

D’Amico, S. & T. King. 2013. Flow and stock effects of large-scale Treasury purchases: Evidence on the
importance of local supply. Journal of Financial Economics 108(2): 425-448.

Driscoll, J. C., & A. C. Kraay. 1998. Consistent, covariance matrix estimation with spatially dependent
panel data. Review of Economics and Statistics, 80(4): 549-560.

Du, W., A. Tepper, & A. Verdelhan. 2018. Deviations from covered interest rate parity. Journal of
Finance, 73(3): 915-957.

Eggertsson, G., & M. Woodford. 2003. The Zero Bound on Interest Rates and Optimal Monetary Policy
Brookings Papers on Economic Activity, 2003(1) :139-233.

Ehrmann, M, Fratzscher, M., Gurkaynak, R., & E. Swanson. 2011. Convergence and anchoring of yield
curves in the euro area. The Review of Economics and Statistics. 93(1): 350-364.

Engel, C. 2016. Exchange rates, interest rates, and the risk premium. American Economic Review,
106(2): 436-74.

Evans, M. D. D., & R. K. Lyons. 2002. Order flow and exchange rate dynamics. Journal of Political
Economy, 110(1): 170-180.

Fama, E. F. 1984. Forward and spot exchange rates. Journal of monetary economics, 14(3): 319-338.

Fama, E. F., & R. R. Bliss. 1987. The information in long-maturity forward rates. American Economic
Review, 77(4): 680-692.

Farhi, E., & X. Gabaix. 2016. Rare disasters and exchange rates. Quarterly Journal of Economics,
131(1): 1-52.

Farhi, E., & I. Werning. 2012. Dealing with the Trilemma: Optimal capital controls with fixed exchange
rates. NBER Working Paper No. 18199

38



Froot, K. A., & T. Ramadorai. 2005. Currency returns, intrinsic value, and institutional-investor flows.
Journal of Finance, 60(3): 1535-1566.

Gabaix, X. & M. Maggiori. 2015. International liquidity and exchange rate dynamics. Quarterly Journal
of Economics 130: 1369-1420.

Gagnon, J., M. Raskin, J. Remache, & B. Sack. 2011. The Financial Market Effects of the Federal
Reserve’s Large-Scale Asset Purchases. International Journal of Central Banking, 7(1), 3-43.

Gourinchas, P.O.; W. Ray, & D. Vayanos. 2022. A Preferred-Habitat Model of Term Premia and Cur-
rency Risk. London School of Economics working paper.

Greenwood, R., S. G. Hanson, & G. Y. Liao. 2018. Asset price dynamics in partially segmented markets.
Review of Financial Studies 31: 3307-3343.

Greenwood, R., S. G. Hanson, & D. Vayanos. 2016. Forward guidance in the yield curve: Short rates
versus bond supply. In Monetary Policy through Asset Markets: Lessons from Unconventional Measures
and Implications for an Integrated World, edited by Albagli, E., D. Saravia, & M, Woodford, Central
Bank of Chile.

Greenwood, R. & D. Vayanos. 2010. Price Pressure in the Government Bond Market. American Economic
Review, 100(2): 585-590.

Greenwood, R. & D. Vayanos. 2014. Bond supply and excess bond returns. Review of Financial Studies
27: 663-713.

Gromb, D., & D. Vayanos. 2002. Equilibrium and welfare in markets with financially constrained arbi-
trageurs. Journal of Financial Economics, 66(2-3): 361-407.

Giirkaynak, R. S., B. Sack, & J. H.Wright. 2007. The U.S. Treasury yield curve: 1961 to the present.
Journal of Monetary Economics 54: 2291-2304.

Haddad, V., & D. Sraer. 2019. The banking view of bond risk premia. Journal of Finance, Forthcoming.
1-78.

Hamilton, J. D., & Wu, J. C. 2012. The effectiveness of alternative monetary policy tools in a zero lower
bound environment. Journal of Money, Credit and Banking, 44: 3-46.

Hanson, S. G. 2014. Mortgage convexity. Journal of Financial Economics 113: 270-299.

Hanson, S. G. & J. C. Stein. 2015. Monetary policy and long-term real rates. Journal of Financial
Economics 115: 429-448.

Hanson, S. G., D.O. Lucca, & J.H. Wright. 2021. Rate-amplifying demand and the excess sensitivity of
long-term rates. Quarterly Journal of Economics, 136(3): 1719-1781.

He, Z., Nagel, S., & Z. Song. 2022. Treasury inconvenience yields during the COVID-19 crisis. Journal
of Financial Economics, 143(1): 57-79.

Itskhoki, O. & D. Mukhin. 2021. Exchange rate disconnect in general equilibrium. Journal of Political
Economy, 129(8): 2183-2232.

Jiang, Z., A. Krishnamurthy, & H. N. Lustig. 2021. Foreign safe asset demand and the dollar exchange
rate. Journal of Finance, 76(3): 1049-1089.

39



Jiang, Z., A. Krishnamurthy, & H. N. Lustig. 2021. Dollar Safety and the Global Financial Cycle.
Stanford University working paper.

Kiefer, N. M., & T. J. Vogelsang. 2005. A new asymptotic theory for heteroskedasticity-autocorrelation
robust tests. Econometric Theory, 21(06): 1130-1164.

Koijen, R. & M. Yogo. 2020. Exchange rates and asset prices in a global demand system. University of
Chicago working paper.

Kouri, P. J. K. 1976. The exchange rate and the balance of payments in the short run and in the long
run: A monetary approach. Scandinavian Journal of Economics, 78(2): 280-304.

Krishnamurthy, A., & A. Vissing-Jorgensen. 2011. The effects of Quantitative Easing on interest rates:
Channels and implications for policy, NBER Working Paper No. 17555.

Krishnamurthy, A., & A. Vissing-Jorgensen. 2012. The demand for Treasury debt. Journal of Political
Economy, 120(2): 233-267.

Krugman, P., Obstfeld, M., & M. Melitz. 2022. International Economics: Theory and Policy, 12th
Edition. Pearson.

Lazarus, E., Lewis, D., Stock, J. & M. Watson. 2018. HAR Inference: Recommendations for practice.
Journal of Business & Economics Statistics, 36(4): 541-559.

Lloyd, S., & E. Marin. 2020. Exchange rate risk and business cycles. Bank of England Staff Working
Paper No. 872.

Lustig, H. N., N. L. Roussanov, & A. Verdelhan. 2014. Countercyclical currency risk premia. Journal of
Financial Economics, 111(3), 527-553.

Lustig, H., A. Stathopoulos, & A. Verdelhan. 2019. The term structure of currency carry trade risk
premia. American Economic Review, forthcoming.

Lustig, H., & A. Verdelhan. 2019. Does incomplete spanning help to explain exchange rates? American
Economic Review, 109(6): 2208-44.

Malkhozov, A., P. Mueller, A. Vedolin, & G. Venter. 2016. Mortgage risk and the yield curve. Review
of Financial Studies, 29(5): 1220-1253.

Mylonidis, N., & C. Kollias. 2010. Dynamic European stock market convergence: Evidence from rolling
cointegration analysis in the first euro-decade. Journal of Banking & Finance, 34(9): 2056-2064.

Neely, C. J. 2015. Unconventional monetary policy had large international effects, Journal of Banking
& Finance 52, 101-111.

Newey, W. K., & K. D. West. 1987. A simple, positive semi-definite, heteroskedasticity and autocorre-
lation consistent covariance matrix. Econometrica 55(3): 703-708.

Obstfeld, M., & K. Rogoff. 2000. The six major puzzles in international macroeconomics: Is there a
common cause? NBER Macroeconomics Annual 2000, Volume 15, 339-412.

Pozzi, L., & G. Wolswijk. 2012. The time-varying integration of euro area government bond markets.
European Economic Review, 56(1): 36-53.

40



Rajan, R. 2016. Towards rules of the monetary game. Speech by R. Rajan, Governor of the Reserve Bank
of India, at the IMF/Government of India Conference on Advancing Asia: Investing for the Future.

Samuelson, P. A. 1947. Foundations of Economic Analysis, Cambridge, MA: Harvard University Press.
Shleifer, A. & R. W. Vishny. 1997. The limits of arbitrage. Journal of Finance, 52 (1): 35-55.

Schulz, A. & G. Wolff. 2008. Sovereign bond market integration: the euro, trading platforms and glob-
alization. Deutsche Bundesbank Discuss Paper Series 1. No. 12/2008.

Spiegel, M. 1998. Stock price volatility in a multiple security overlapping generations model. Review of
Financial Studies 11: 419-447.

Swanson, E. T. 2017, Measuring the effects of Federal Reserve forward guidance and asset purchases on
financial markets. NBER Working Paper No. 23311.

Tabova, A. & F. Warnock. 2022. Foreign investors and US Treasuries. NBER Working Paper No. 29313.
Tobin, J. 1958. Liquidity preference as behavior towards risk. Review of Economic Studies 25(2), 65-86.

Tobin, J. 1969. A general equilibrium approach to monetary theory. Journal of Money, Credit and
Banking: 15-29.

Vayanos, D. and J. Vila. 2021. A preferred-habitat model of the term structure of interest rates. Econo-
metrica, 89(1): 77-112.

Verdelhan, A. 2010. A habit-based explanation of the exchange rate risk premium. Journal of Finance,
65(1): 123-146.

Watanabe, M. 2008. Price volatility and investor behavior in an overlapping generations model with
information asymmetry. Journal of Finance 63: 229-272.

Woodford, M. 2012. Methods of policy accommodation at the interest-rate lower bound. Proceedings -
Economic Policy Symposium - Jackson Hole, 185-288.

41



Table 1

Contemporaneous relationship between movements in foreign exchange, short-term interest rates,
and long-term interest rates

H = 3-month changes H = 12-month changes
(1) (2) (3) (4) (5) (6) (7) (8)
Ap(ice —1t) 4.27 3.22 2.77 1.26
(1.37)"  (1.47)" (1.44) (1.64)
Ay (Yer = Ye) 3.13 5.13
(1.26)" (1.88)"
Apice 6.69 5.16 6.00 3.10
(1.23)"™  (1.11)™ (1.15)™"  (1.40)
Ayis -3.10 -1.67 -2.14 -0.21
(0.84)™  (0.84)" (0.93)" (1.08)
Apyce 4.94 9.07
(1.39)™ (1.63)™
Ay y: -3.98 -5.77
(1.06)™ (1.61)™
DK lags 18 18 18 18 29 29 29 29
N 1,512 1,512 1,512 1,512 1,512 1,512 1,512 1,512
R? (within) 0.12 0.14 0.18 0.22 0.10 0.14 0.20 0.27

Notes: This table presents monthly panel regressions of the form:
AH‘]c,t =4, +BXAH(i:,t _it)+DXAH(y:,t _yt)+Ach,t3

and

Ayq.,=A.+B xAHi:J +B, XA, i, + D, XAHij + D, x Ay, + Ay g,
We regress H-month changes in the foreign exchange rate on H-month changes in short-term interest
rates and in long-term yields in both the foreign currency and in U.S. dollars. All regressions include
currency fixed effects. The sample runs from 200Im1 to 2021m12 and includes six currency pairs:
AUD-USD, CAD-USD, CHF-USD, EUR-USD, GBP-USD, and JPY-USD (a higher value of g, means
that currency c is stronger against the USD). Our proxy for the short-term interest rate is the 1-year
government yield. Our proxy for the long-term interest rate is the 10-year government bond yield. We
report Driscoll-Kraay (1998) standard errors allowing for serial correlation up to a lag parameter that
is chosen using a data-dependent approach based on Lazarus, Lewis, Stock, and Watson (2018). ", ™,
and ™" indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively. Statistical
significance is assessed using the fixed-b asymptotic theory of Kiefer and Vogelsang (2005).
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Table II

Contemporaneous relationship between movements in foreign exchange, short-term interest rates,
and long-term forward rates

H = 3-month changes H = 12-month changes
(1) (2) (3) (4) (5) (6) (7) (8)
Ap(ice —1t) 4.27 4.15 2.77 2.70
(1.37)""  (1.38)™ (1.44) (1.42)
Ay (fee — 1) 1.72 2.50
(1.21) (1.13)"
Ayice 6.69 6.53 6.00 5.54
(1.23)"™  (1.21)™ (1.15)™  (1.12)™
Ayis -3.10 -2.92 -2.14 -1.72
(0.84)™  (0.87)"™ (0.93)"  (0.87)°
Ayfee 2.41 5.38
(0.99)" (0.84)™
Ay fe -1.95 -2.79
(1.01)" (0.83)™
DK lags 18 18 18 18 29 29 29 29
N 1,512 1,512 1,512 1,512 1,512 1,512 1,512 1,512
R? (within) 0.12 0.13 0.18 0.20 0.10 0.11 0.20 0.25

Notes: This table presents monthly panel regressions of the form:
AHqC,t = Ac + B x AH (i:,t _it) +Dx AH (fc*t _f;) + Aﬂgc,ta

and

Ayq.,=A.+B xAHi:J + B, xA i, + D, xAHf:J +D,x Ay fi+ALE .
We regress H-month changes in the foreign exchange rate on A-month changes in short-term interest
rates and in distant forward rates in both the foreign currency and in U.S. dollars. All regressions
include currency fixed effects. The sample runs from 2001ml to 2021m12 and includes six currency
pairs: AUD-USD, CAD-USD, CHF-USD, EUR-USD, GBP-USD, and JPY-USD. Our proxy for the
short-term interest rate is the 1-year government bond yield. Our proxy for the distant forward rate
is the 3-year, 7-year forward government bond yield. We report Driscoll-Kraay (1998) standard
errors allowing for serial correlation up to a lag parameter that is chosen using a data-dependent
approach based on Lazarus, Lewis, Stock, and Watson (2018). ", ™, and ™" indicate statistical
significance at the 0.10, 0.05, and 0.01 levels, respectively. Statistical significance is assessed using
the fixed-b asymptotic theory of Kiefer and Vogelsang (2005).
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Table III

Forecasting foreign minus domestic bond excess returns using short-term interest rates and long-
term forward rates

H = 3-month excess returns H = 12-month excess returns
(1) (2) (3) (4) (5) (6) (7) (8)
lor— It -0.05 -0.21 0.11 -0.27
(0.14) (0.13) (0.45) (0.39)
fer— [t 1.74 4.31
(0.22)™ (0.33)™
iot -0.17 -0.23 -0.37 -0.51
(0.16) (0.16) (0.49) (0.42)
i -0.08 0.08 -0.60 -0.21
(0.17) (0.14) (0.53) (0.37)
ot 1.62 3.94
(0.21)™ (0.55)"
ft -1.71 -4.12
(0.25)" (0.38)"
DK lags 17 17 17 17 28 28 28 28
N 1,494 1,494 1,494 1,494 1,440 1,440 1,440 1,440
R? (within) 0.00 0.10 0.02 0.11 0.00 0.22 0.08 0.28

Notes: This table presents monthly panel forecasting regressions of the form:

P y _ S . *
rxc,t—)HH - rxc,t—)HH - Ac + B X (lc,t lt) + D X (fc,t .ft) + 8c,t—>t+H s
and
y* y _ ok . *
rxc,t%t+H - rxc,t%t+H - Ac + Bl X lc,t + BZ X lt + Dl X f;,t + D2 X ﬁ + gc,t%t+H'

We forecast the difference between foreign and domestic A-month bond returns using short-term
interest rates and distant forward rates in both the foreign currency and in U.S. dollars. All regressions
include currency fixed effects. The sample runs from 2001m1l to 2021m12 and includes six currency
pairs: AUD-USD, CAD-USD, CHF-USD, EUR-USD, GBP-USD, and JPY-USD. Our proxy for the
short-term interest rate is the 1-year government bond yield. Our proxy for the distant forward rate
is the 3-year, 7-year forward government bond yield. rng :_)t +H— rng t»t+p 15 the difference between
the H-month log excess returns on 10-year foreign bonds and those on 10-year domestic bonds—i.e.,
the difference between the returns on two yield-curve carry trades that borrow short- and lend long-
term. We report Driscoll-Kraay (1998) standard errors allowing for serial correlation up to a lag
parameter that is chosen using a data-dependent approach based on Lazarus, Lewis, Stock, and Watson
(2018). *, ™, and " indicate statistical significance at the 0.10, 0.05, and 0.01 levels, respectively.
Statistical significance is assessed using the fixed-b asymptotic theory of Kiefer and Vogelsang (2005).
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Table IV

Forecasting foreign exchange excess returns using short-term interest rates and long-term forward

rates
H = 3-month excess returns H = 12-month excess returns
(1) (2) (3) (4) (5) (6) (7) (8)
lor— It 0.21 0.29 0.65 0.96
(0.36) (0.37) (1.31) (1.34)
fee — [ -0.83 -3.59
(0.39)" (1.03)™
iot 0.31 -0.13 1.23 0.11
(0.43) (0.60) (1.44) (1.76)
i -0.10 -0.06 -0.05 -0.02
(0.33) (0.36) (1.16) (1.22)
ot -0.27 -1.86
(0.37) (0.84)°
fi 0.88 3.51
(0.42)" (1.09)™
DK lags 17 17 17 17 28 28 28 28
N 1,494 1,494 1,494 1,494 1,440 1,440 1,440 1,440
R? (within) 0.00 0.01 0.01 0.03 0.01 0.04 0.03 0.09

Notes. This table presents monthly panel forecasting regressions of the form:
rxg,t—)HH = Ac + B X (i:,t - lt) + D x (f:l‘ - f;‘) + gc,t—>t+H’
and
rxg,taHH = Ac +B1 Xi:,t +Bz Xit +D1 Xjfcft +D2 Xf; +‘9c,tat+H'
We forecast H-month foreign exchange excess returns using short-term interest rates and distant
forward rates in both the foreign currency and in U.S. dollar. All regressions include currency fixed
effects. The sample runs from 2001m1 to 2021m12 and includes six currency pairs: AUD-USD, CAD-
USD, CHF-USD, EUR-USD, GBP-USD, and JPY-USD. For simplicity, the short-term interest rates
on the right-hand side in these regressions are 1-year government bond yields. Our proxy for the
distant forward rate is the 3-year, 7-year forward government bond yield. rxg t>t+y 18 the A-month

log excess return on the FX carry trade strategy that borrows short-term in U.S. dollars and lends

short-term in currency c¢ and is defined as rxg,t_)HH = (Get+n — o) + (H/12)( i:(H/lz) - igH/lz))

where i:(H/ 12) and igH/ 12) denote the (H/12)-year short-term interest rates in foreign currency ¢ and

U.S. dollars, respectively. We report Driscoll-Kraay (1998) standard errors allowing for serial
correlation up to a lag parameter that is chosen using a data-dependent approach based on Lazarus,
Lewis, Stock, and Watson (2018). *, ™, and ™" indicate statistical significance at the 0.10, 0.05, and
0.01 levels, respectively. Statistical significance is assessed using the fixed-b asymptotic theory of Kiefer
and Vogelsang (2005).
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Table V

Daily movements in foreign exchange, short-term interest rates, and long-term forward rates on QE
announcement dates

(1) (2) (3) (4)
Ay(icrsz — les2) 8.26 9.67
(3.33)" (2.12)™
A4(fcft+2 = ft+2) 4.04
(1.26)"
Ayicesr 7.53 8.82
(3.26)" (2.25)™
AR P -17.01 -13.45
(6.89)" (5.67)"
A4fcft+2 4.33
(1.41)™
Asfes2 -3.59
(1.41)
N 128 128 128 128
R-squared 0.10 0.26 0.14 0.27

Notes: This table presents daily panel regressions of the form:

AV A+BxA, (i:,z+2 —l,)+DxA, (f:z+2 — S+ AyE, 112>

and

ok . *

Ao yin = A+ B XAy o+ By XAyl + DiXAL S+ Dy XAy f o +AE .
on days with major QE news announcements by the U.S. Federal Reserve, the European Central
Bank, the Bank of England, and the Bank of Japan from 2008 to 2019. We regress 4-day changes in
the foreign exchange rate on 4-day changes in short-term interest rates and in distant forward rates
in both the foreign currency and in U.S. dollars. For an announcement on date ¢, we look at changes
from date ¢ — 2 to ¢ + 2. We show results for EUR-USD, GBP-USD, and JPY-USD where a higher
value of q.; means that currency c is stronger versus to the dollar. Our proxy for the short-term
interest rate in each currency is the 1-year government bond yield. Our proxy for the distant
forward rate is the 3-year, 7-year forward government bond yield. To form our list of QE
announcement dates, we begin with Fawley and Newley’s (2013) list of unconventional policy
announcements by these four central banks. We update this list through 2019 and then focus on the
subset of the announcement that contain news about central bank purchases of long-term bonds
(either sovereign or private-sector). Standard errors are clustered by announcement date in these
specifications. *, , and ™" indicate statistical significance at the 10%, 5%, and 1% levels.
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Figure I

Movements in exchange rates versus differential movements in forward rates on QE announcement
dates

The figure shows the movement in foreign exchange rates versus movements in the difference between
foreign and domestic long-term forward rates around Quantitative Easing (QE) announcement dates
by the U.S. Federal Reserve, the European Central Bank, the Bank of England, and the Bank of Japan
from 2008 to 2019. For an announcement on date ¢, we show the change in the foreign exchange rate
and the movement in foreign minus domestic long-term rates from day ¢ — 2 to day ¢ + 2. The long-
term forward rate is the 3-year yield, 7-years forward. For the U.S. announcements, we plot the average
appreciation of the dollar relative to euro, pound, and yen versus the movement in U.S. long-term
forward rates minus the average movement in forward rates for the euro, pound, and yen. For the
other three currencies, we plot their appreciation relative to the dollar versus the movement in the
local currency forward rate minus the dollar forward rate. To form our list of QE announcement dates,
we begin with Fawley and Newley’s (2013) list of unconventional policy announcements by these four
central banks. We update this list through 2019 and then focus on the subset of the announcement
that contain news about central bank purchases of long-term bonds (either sovereign or private-sector).
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Figure II

Further segmenting the global bond markets

This figure illustrates the model with further segmentation from Section 4.1. The figure shows the
impact of a shock to domestic bond supply on expected returns (top panel) and investor holdings
(bottom two panels) as a function of the fraction of specialists, p. The figure assumes w = 1/3, so
specialists are evenly split between domestic bonds, foreign bonds, and foreign exchange. We chose
the other parameters so each period represents one month. We assume: o; = 0.25%, ¢; = 0.985, p =
0.5, 05y =1, ¢y = 0.95, 050 = 1, psa = 0.95, 040 = 0.5%, 6§ = 119/120 (i.e., the long-term bond
has a duration of 120 months or 10 years), and T = 1.80. These parameter choices are illustrative.
See Section C.1 of the Appendix for additional details.
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