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Abstract

We explore the idea that judgment by representativeness reflects the workings of

memory. In our model, the probability of a hypothesis conditional on data increases

in the ease with which instances of that hypothesis are retrieved when cued with

the data. Retrieval is driven by a measure of similarity which exhibits contextual

interference: a data / cue is less likely to retrieve instances of a hypothesis that

occurs frequently in other data. As a result, probability assessments are context

dependent. In a new laboratory experiment, participants are shown two groups of

images with different distributions of colors and other features. In line with the

model’s predictions, we find that i) decreasing the frequency of a given color in one

group significantly increases the recalled frequency of that color in the other group,

ii) cueing different features for the same set of images entails different probabilistic

assessments, even if the features are normatively irrelevant. A calibration of the

model yields a good quantitative fit with the data, highlighting the central role of

contextual interference.
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1 Introduction

A vast literature in psychology shows that individuals’ probabilistic judgments are vul-
nerable to systematic errors (see Benjamin 2018 for a review). An important body of
evidence, ranging from base rate neglect to the disjunction fallacy, focuses on the rep-
resentativeness heuristic, the tendency to judge as likely events that are merely rep-
resentative. Representativeness captures “the degree to which [an event] is similar in
essential characteristics to its parent population” (Kahneman and Tversky, KT 1972). In
a well-known example, subjects are given a short description of an introverted man and
are asked to rank, in order of likelihood, several different occupations (Tversky and Kah-
neman, TK 1974). Subjects tend to state that the introverted man is more likely to be a
librarian than a salesman, even though there are vastly more salesmen than librarians.
Being an “introvert”, the reasoning goes, makes the man more similar to a librarian than
to a salesman, which causes an inflated assessment of likelihood.

But why do subjects use similarity in making probability judgments? Why should
similarity sometimes cause them to think about unlikely events, so that judgments are
incorrect? Why among introverted men do we think about the unlikely librarian instead
of the more likely salesman? Why do we exaggerate the likelihood that an Irish person
has red hair even though only 10% of them do (Bordalo et al., BCGS 2016)?

We address these questions starting from the idea that probability judgments are
formed by selectively retrieving information from memory, cued by the problem at hand.
In our model, a decision maker assesses the likelihood of different hypotheses in light of
data d. In line with memory research (Kahana 2012), recall of a hypothesis h is driven
by its similarity with the data d, and is subject to interference, so that hypotheses more
similar to the data prevent less similar ones from coming to mind. When told someone is
Irish – that is, when cued with the data d = Irish – the decision maker selectively recalls
the hair color h, in this case red, that is most similar to this data, and overestimates its
likelihood.

Our theoretical contribution is to formalize similarity between the data-cue and the
hypothesis assessed, which constitute different yet overlapping sets. Our formulation of
similarity is inspired by Tversky’s (1977) similarity metric, and captures the idea that
two sets are more similar when the statistical correlation among their attributes is higher.
In probabilistic judgments, this implies that a hypothesis h is more easily recalled when
it is more likely to occur with the data d, but also when it is less likely to occur with
other data �d. Similarity-based recall is then context dependent, in that recall about
data d depends on the comparison data �d, sometimes causing neglect of likely events.
For instance, when thinking about d = Irish, it is harder to recall the modal hair color
h = dark because it occurs very often in other nationalities �d, which interferes with
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its recall in the Irish group. We refer to this mechanism as contextual interference, since
interference with hypothesis h is determined by the context provided by the alternative
data �d.¹

Our second contribution is to present a novel experimental framework and a set
of experimental results that provide evidence for this mechanism. The model yields
testable predictions for how biases in probability judgments depend on the statistical
associations between the data and hypotheses. To test these predictions, we run three
(main) experiments with the following basic structure. Participants observe a sequence
of 25 numbers and 25 decoy images (either shapes or words), which come in different
colors. Among numbers, 15 are blue and 10 are orange. In one treatment, decoy images
are all gray shapes so there is no color overlap with numbers. In another treatment,
decoys are all blue words, which is also the modal color among numbers. Participants
are then asked to: i) recall the numbers they saw, and ii) estimate the likelihood of
different colors among numbers. We think of data as d = numbers, and the possible
hypotheses, h 2 H, as the colors.

In Study 1 we test contextual interference: we predict that the hypothesis h= orange
is deemed more likely when the decoy data �d are blue words than when they are
gray shapes, because blue words interfere with the recall of blue numbers. For the same
reason, fewer blue numbers should be recalled in this case. In Study 2 we vary the
strength of interference by adding orange words to the decoy data �d. As blue words
are replaced with orange ones, retrieval of blue numbers is less interfered with and
retrieval of orange numbers is more interferedwith. Ourmodel predicts that the assessed
likelihood of hypothesis h= orange should decrease with the number of orange words.

In Study 3 we test a key implication of our model of memory-based probabilistic
judgments: descriptions of the judgment task that shape perceptions of similarity affect
memory retrieval and thus probability judgments, even if they are normatively irreve-
lant. Specifically, we keep the color distribution of numbers and words fixed, but allow
the images to differ along font size: either small or large. Crucially, all blue numbers are
small, while all other items (orange numbers and blue words) are large. This ensures
that, given d = numbers, the hypothesis h= orange is equivalent to the hypothesis h=
large. However, our model predicts that participants should assess the size distribution

¹The literature on similarity usually focuses on judgments of similarity between two objects of the
same type, say similarity between faces (Tversky 1977, Kahana 2012). In contrast, we argue that to under-
stand probabilistic judgments we must consider similarity between two sets: the data and the hypothesis.
An example may help illustrate the difference. Consider the data “things that fly”. A standard approach
would consider the similarity among two specific airplanes depending on their differences along certain
characteristics. This is the approach followed also in probabilistic judgment models such as PROBEX. In
our approach, instead, we ask how similar is the broad set “airplanes” to the broad set “things that fly”,
which also includes birds and clouds, and thus how likely is “airplane” to be retrieved when cued with
“things that fly”.
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of numbers differently from its color distribution, even though the two coincide. The
reason is that when thinking about size, contextual interference by the decoy data pe-
nalizes large numbers (which are orange), but when thinking about color it penalizes
blue numbers (which are small).

We find strong and robust evidence consistent with these predictions. To assess our
mechanism quantitatively, we use the data from Study 1 and from a subset of treatments
in Study 2 to calibrate the model. We then use the calibrated model to predict, out of
sample, the other results in Studies 2 and 3, as well as the results of additional exper-
iments we ran. This exercise confirms that contextual interference is a quantitatively
important determinant of beliefs and that our model offers a good quantitative fit.

In our approach, the representativeness heuristic derives from a basic cognitivemech-
anism: context-dependent, similarity-based recall. As such, it differs from existing mod-
els of faulty probability judgments. One strand of the literature invokes limited mem-
ory, including sampling models (Sanborn and Chater 2016), the Minerva MD model
(Dougherty et al. 1999) or the exemplar PROBEX model (Nilsson, Olsson, and Juslin
2005). The first two models are based on noisy recall, which yields some biases but not
the overestimation of unlikely events. In the PROBEX model, the exemplar hypothesis
of data d does not depend on different data �d, which makes this model unsuitable to
account for how probability judgments depend on the decoy group.²

Bhatia (2017) shows that social stereotypes, such as introverted male librarians and
red-haired Irish, can be spread through the media and personal interactions, through
selective repetition of the more representative cases. This semantic association and rep-
etition of unlikely traits improves accessibility in memory that may cause their over-
estimation. While this mechanism contributes to biases in social contexts, it does not
explain the source of these biases (why does media focus on these specific traits), and
why biases are widespread even in abstract judgments such as those in our experiments.

Several papers explicitly engage with the representativeness heuristic. Tenenbaum
andGriffiths (2001) formalize representativeness based on Tversky and Kahneman (1983),

²Other models of memory are motivated not by biases in probabilistic assessments but by evidence on
recall, specifically by the fan effect (Anderson 1974) and a large body of evidence on interference going
back to the early 20th century (Jenkins and Dallenbach 1924, Whitely 1927, McGeoch 1932, Underwood
1957, Keppel 1968). Anderson (1974) shows that concepts associatedwithmore items aremore difficult to
remember in response to any specific cue, as evidenced by slower response times and a larger error rate in
a recognition task. Similarly, in word-pair recall tasks, associating the same cue word with different target
words in different lists reduces recall of both the pair learned first and the pair learned later (see Kahana
2012 for a review). Two broad approaches to this evidence have been proposed: associative models such
as the Adaptive Control of Thought - Rational (ACT-R, Anderson and Reder 1999), and inhibition models
such as inhibitory control in retrieval (Anderson and Spellman 1995). As in most existing models within
the similarity framework, interference here occurs across types associated with a cue, which in our model
corresponds to interference across different hypotheses h associated with data d. Instead, our model and
experiments highlights the importance of contextual interference, namely the association of hypotesis h

with some other data �d.
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but do not link it to similarity-based recall and interference. Relative to this work, we
offer a theory of representativeness based on interference in recall. More broadly, we
show that our mechanism generates beliefs that amplify true differences between distri-
butions, a property introduced in Gennaioli and Shleifer (GS 2010) and BCGS (2016)
that we refer to as the kernel of truth.

Our recent work shows that the kernel of truth helps account for a wide range of
experimental and field evidence on beliefs in several domains: GS (2010) illustrate
its explanatory power for several puzzles in probabilistic judgments, such as the con-
junction fallacy and base rate neglect, that were originally attributed to representative-
ness (KT 1972). BCGS (2016) show that the same principle helps explain measured
beliefs about political groups as well as social stereotypes, while BCGS (2019) show
that its predictive power extends to beliefs about own ability, tainted by group stereo-
types. The kernel of truth also helps account both qualitatively and quantitatively for
measured expectations of market participants in macroeconomics and finance (Bordalo,
Gennaioli, Shleifer 2018, Bordalo, Gennaioli, Ma, Shleifer 2018, Bordalo, Gennaioli, La
Porta, Shleifer 2019).

The results in this paper link the kernel of truth to memory mechanisms, deepen our
understanding of these biases, and shed light on how beliefs are shaped by contextual
cues.The model does not explain several other judgment biases that have been docu-
mented by KT (1972) and others, such as the law of small numbers or biases due to the
anchoring and the availability heuristics. We return to these in the conclusion.³

The paper is organized as follows. Section 2 describes the model and the experimen-
tal framework. Section 3 describes our first set of experiments in which representative-
ness is controlled by varying the comparison group. Section 4 presents the experiment
in which the database is the same for all participants but recall is cued along different
dimensions. Section 5 discusses our findings and Section 6 concludes.

³Growing literatures in both Neuroscience and Economics explore the role of memory for valuation
and decision making, particularly the role of cues in selectively retrieving information. Bornstein et al
(2017) find that choices among risky alternatives can be altered by showing subjects images that co-
occurred with payoffs in the past, even if these images are totally uninformative. The authors argue
that the subjects’ behavior is consistent with a cued recall mechanism: whether the subjects respond to
the cue is commensurate with the reinstatement in the brain’s visual areas of patterns associated with
the cue. Enke, Schwerter and Zimmerman (2019) give experimental subjects news about a hypothetical
asset, associating certain images with good news and others with bad news. When assessing the asset’s
value, subjects overreact to good news associated with images that co-occurred with past good news.
This result is in line with the model of memory-based choice of Bordalo, Gennaioli, and Shleifer (2019)
in which context (an image) cues recall of past experiences associated with it. Several papers document
that individuals’ decisions are shaped by recall of past experiences: assessments of expected inflation are
based on goods bought frequently (Cavallo, Cruces, Perez-Truglia 2017), and willingness to participate in
the stock market depends on own past returns (Malmendier and Nagel 2011, Wachter and Kahana 2019).
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2 Model and Experimental Framework

2.1 The Model

Our model captures the idea that probability judgments, such as assessing the prob-
ability distribution of hair color among the Irish, are formed by selectively retrieving
relevant instances from memory. Retrieval of different hypotheses (hair colors) is cued
by the data (the Irish), and is driven by their similarity. We show that Tversky’s (1977)
model of similarity among sets yields a form of interference in recall that is critical to
generating representativeness effects and several other predictions explored below.⁴

The memory database is described by a probability space with event space ⌦ and
probability measure P, which summarizes a person’s experiences including their fre-
quencies. Two random variables are defined on this space: H, which we think of as the
hypotheses the DM seeks to assess, and D, which we think of as data. The task of the de-
cision maker is to assess the probability of hypothesis h 2 H given data d 2 D. In our run-
ning example,⌦ is the universe of people, D = nationalities and H = {dark, l i ght, red}
are different hair colors.

A Bayesian retrieves all possible hypotheses h given d and computes the true condi-
tional probability P(h|d) using the measure P.⁵ Relative to this benchmark, in our model
the data d cues retrieval of more similar hypotheses from memory, facilitating recall of
certain hypotheses relative to others, and causing their probability in d to be inflated.

To formalize the similarity between data d and a hypothesis h we rely on Tversky’s
(1977) similarity metric, which applies to objects characterized as collections of features.
Given two objects a and b with sets of features A and B, respectively, the similarity of a

to b is defined as:

S(a, b) = ↵ f (A\ B)� � f (A/B)� � f (B/A), (1)

where A\ B is the subset of features that are common to both objects, A/B and B/A are
the features that are present in one object but not in the other, f (.) is an increasing func-
tion, and ↵, � , � are non-negative coefficients. According to Equation (1), the similarity
between a and b is ceteris paribus higher when they have more features in common,
and when each set has fewer distinct features not shared with the other.

⁴Tversky’s (1977) model of similarity has also been used to study the problem of categorization,
which is distinct from what we consider here. Kemp, Bernstein, and Tenenbaum (2005) and Gershman
(2017) show that testing whether two objects have the same data generating process reduces, under some
assumptions, to a measure of non-Euclidean similarity similar to Tversky’s model.

⁵Formally, the decisionmaker computes the conditional probability by retrieving all elementary events
! consistent with each hypothesis h and data d, and by using the probability measure P to compute:

P(H = h|D = d) =
R
!2⌦:H(!)=h,D(!)=d

dP(!)
R
!2⌦:D(!)=d

dP(!)
.
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Equation (1) can be applied to the context of probabilistic assessments by noting
that data d and each possible hypothesis h are also characterized by features, namely
the different possible values of the random variables under consideration. For instance,
d = Irish is the set of people who are Irish but can have different hair color (red, light,
dark), while h = red is the set of people who have red hair and may have different
nationalities (Irish, Spanish,. . . ).

In this interpretation of Equation (1), the similarity between the set of red haired
people and the set of Irish people depends on the size of three subsets. Similarity S(d, h)
between d and h increases in the size P(d, h) of the set of people who are both Irish and
have red hair. But similarity between d and h decreases in the size P(d,�h) of the set of
people who are Irish but do not have red hair, as well as in the size P(�d, h) of the set of
people who have red hair but are not Irish. Formally, the similarity between hypothesis
h and data d is given by:

S(d, h) = ↵ f (P(d, h))� � f (P(d,�h))� � f (P(�d, h)). (2)

Similarity between hypothesis h and data d increases in their correlation: the more h

and d occur together. In the previous example, for a given size of the red-haired Irish
population P(d, h), similarity between Irish and red hair is maximized when all Irish are
red haired, P(d,�h) = 0, and when red hair occurs only among the Irish, P(�d, h) = 0.

Similarity is linked to retrieval through Luce’s rule. That is, the probability of recall-
ing h when cued with d is given by:

eP(h|d) = e
S(d,h)
P

h02H

eS(d,h0)
. (3)

When cued with d, a hypothesis h more similar to d is more easily retrieved. Retrieval is
normalized, so that recall probabilities add to one. Normalization captures a form of in-
terference whereby recall of more similar items inhibits that of less similar ones. The de-
cision maker estimates the probability of h in d by measuring the frequency with which
h comes to mind among all retrieved d members. Through the law of large numbers,
Equation (3) also yields the probability that subjects on average attach to hypothesis h

given data d.
According to (3), recall of h, and thus its assessed probability, follow the well known

law of frequency. The more people are both Irish and have red hair (higher P(d, h)),
the more likely is d = Irish to cue retrieval of h = red hair. This effect is common
to most memory-based models of probability assessments (Anderson and Reder 1999,
Dougherty, Gettys, Ogden 1999, Kahana 2012).

The law of frequency is however subject to two kinds of interference. The first is
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interference across different hypotheses. A person who has seen many dark haired Irish
(high P(d,�h)) is less likely to recall red hair. This is due to both the � term in the
similarity function (2) and the normalization of recall in Luce’s rule (3). Many memory
models, including Minerva DM and sampling, display this form of interference, which
tends to produce underestimation of unlikely traits.

The second, and critical, form of interference occurs across different data. For a
decision maker who has seen few non-Irish people with red hair (which implies a low
P(�d, h)), Irish is more associated with red hair, and retrieval of red haired Irish is
increased. Conversely, when thinking about dark hair among d = I r ish, Spaniards
or Italians may come to mind because this hair color is much more common among
these other nationalities �d. This interferes with recalling dark haired Irish. This form
of interference flows back from hypothesis h to different data �d.

This second mechanism only operates when �> 0, and implies that distinctive traits
are overestimated, even if they are unlikely. We call this the “kernel of truth” property.
It leads subjects to overestimate a hypothesis h that is more associated with the cur-
rent data d relative to other data �d, even though the latter association is normatively
irrelevant. Our experiment tests this prediction precisely by varying the normatively ir-
relevant “decoy” distribution P(�d, h) while holding the relevant probabilities P(d, h)
and P(d,�h) constant.⁶

Consider a convenient formulation in which f (x) = ln (c + x), where c is a non-
negative constant, and � = 0.⁷ The assessed probability eP(h|d) then becomes:

eP(h|d)/ [c + P(h|d)P(d)]↵
[c + P(h|� d)P(�d)]�

. (4)

Parameter ↵ captures the strength of frequency-based recall. When ↵ is high, likely
hypotheses are oversampled from memory and their probability is inflated. For low ↵,
the reverse holds: sampling depends less on P(h|d), so that low likelihood hypotheses
are oversampled across the board.

Parameter � instead captures contextual interference, or the kernel of truth. If � is
high, when cued by data d we oversample hypotheses that are unlikely to occur with
other data, i.e. with low P(h|� d). The decision maker then inflates the probability of
such distinctive hypotheses. The parameter c pins down a baseline probability of recall-

⁶Another difference from existing memory models is that in our setup encoding is perfect, not noisy
as in the Minerva-DM of Dougherty, Gettys, Ogden (1999). Noisy encoding could be added to our model,
but we stress that interference across groups relies on fairly accurate memories, in the sense that the
co-occurrence of types and groups is correctly recorded. This is critical to obtain belief distortions that
depend on the true features of the data.

⁷In our two-hypothesis setting, both � and ↵modulate the extent to which similarity S(d, h) increases
in the likelihood P(d, h), so � is redundant.
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ing a hypothesis, regardless of its frequency, which caps distortions when a hypothesis
does not occur at all given the decoy data �d.

Equation (4) flexibly nests different kinds of judgments, both rational and biased.
When ↵ = 1 and c = � = 0, the model collapses to Bayesian inference. When instead
↵> 1, and c = �= 0 the model generates a form of over-reaction to data, in the sense of
overestimation of hypotheses that are more likely given d, reminiscent of overconfidence
(Moore and Healy 2008). Conversely, when ↵< 1 the model generates a form of under-
reaction to data. In the extreme case of ↵= 0, all hypotheses are recalled with the same
probability, so that unlikely ones are mechanically oversampled.

When � = 0, the model fails to yield context-dependent beliefs and overestimation
of distinctive hypotheses. This occurs only when � > 0, so that assessements about
d depend on the decoy distribution �d. This mechanism generates representativeness
effects. In fact, if ↵= 1+ � and c = 0, Equation (4) becomes:

eP(h|d)/ P(h|d)
ï

P(h|d)
P(h|� d)

ò�
. (5)

which exactly captures Kahneman and Tversky’s (1983) definition of representativeness:
“an attribute is representative of a class if it is very diagnostic; that is, the relative fre-
quency of this attribute is much higher in that class than in a relevant reference class.”
In this case, our model yields the BCGS (2016) definition of representativeness and di-
agnostic expectations (BGS 2018), which direcly follow KT’s definition, as special cases
of similarity based recall.

Our experiments test the predictions that follow from � > 0 by varying the decoy
data �d across treatments. Our experiments then allow us to quantify the parameters
of the model, and hence to assess Equation (4) quantitatively.

2.2 Experimental Design

We now describe our main experiments, and the model’s predictions for each of them.

Study 1. Participants are shown a sequence of 50 abstract images that vary along two
dimensions, content and color. They are randomly assigned to one of two treatments: a
condition in which they see 10 orange numbers, 15 blue numbers and 25 gray shapes
(gra y treatment); or a condition in which they see the same 10 orange numbers and
15 blue numbers, but also 25 blue words (the blue treatment). The memory databases
are described below.

After observing the sequence of 50 images, participants are asked several questions.
On the first screen, they are asked:
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Table 1: Databases of Study 1

Image database in the gra y treatment
Hypotheses:

orange blue gray

Data: numbers 10 15 0
decoy (shapes) 0 0 25

Image database in the blue treatment
Hypotheses:

orange blue gray

Data: numbers 10 15 0
decoy (words) 0 25 0

(Q1) “An image was randomly drawn from the images that were just shown to you. The
chosen image showed a number. What is the likely color of the chosen image?”

On the following screen, participants are given the same scenario but then asked:

(Q2) “What is the probability the number is orange?”

Finally, on the next screen, participants are asked:

(Q3) “How many orange numbers were shown to you?”, and

(Q4) “‘How many blue numbers were shown to you?”

In both treatments, subjects assess the distribution of the colors of the numbers, but
the decoy distribution varies across treatments. All our experiments build on this basic
design, which extends the preliminary experiments in BCGS (2016).

In Q1 and Q2 subjects are cued with the data d = number and are asked to assess the
probability of different colors. In Q3 and Q4 they are asked to recall how many orange
and blue numbers were shown to them. Our model implies that assessments of likeli-
hood and recall go hand in hand, and are shaped by the critical contextual interference
parameter � in Equation (4). Formally, Appendix A shows that Equation (3) yields the
following predictions.

Prediction 1. If � > 0, the blue treatment reduces the assessed likelihood that the ran-
domly drawn number is blue in Q1 and Q2 relative to the gray treatment. If �= 0 there is
no treatment effect.

and
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Prediction 2. If �> 0, the blue treatment reduces the share of blue numbers recalled in Q3
and Q4 relative to the gray treatment. There is also a positive correlation at the individual
level between the share of blue numbers recalled from Q3 and Q4 and the assessed likelihood
of the number being blue in Q1 and Q2. If �= 0 there is no treatment effect.

If �> 0, in the blue treatment the retrieval of blue words interferes with the retrieval
of blue numbers from the data d = number. Thus, blue numbers are undersampled
relative to the gray treatment, in which interference in the retrieval of numbers of any
color is not at work. As a result, the probability of the less likely hypothesis – that a
number is orange – is overestimated in the blue treatment. If instead � = 0, the decoy
distribution is irrelevant so there is no treatment effect.

Study 2. In this experiment, we manipulate the strength of contextual interference
by creating five new variants of the decoy data (the distribution of numbers is always
kept the same). We denote by blue

k
a treatment in which we replace k blue words with

orange words. We allow for six such treatments varying the frequency of orange words
k 2 {0, 1,3, 6,10, 22} (where k = 0 coincides with the blue treatment in Study 1). The
model generates the following prediction.

Prediction 3. If � > 0, the assessed probability that a random number is orange in Q1
and Q2 and the share of recalled orange numbers in Q3 and Q4 decrease with the number
of orange words k in the decoy distribution. If �= 0 there is no treatment effect.

Prediction 3 is a more stringent test of the kernel of truth. According to Equation (4),
the probability of retrieving orange given d = number and thus the assessed likelihood
of orange numbers both decrease in the share of orange words, because orange words
interfere with the recall of orange numbers.

Study 3. In our final experiment, we test a key implication of the model: features of
the task that shape perceptions of similarity affect memory retrieval and thus probability
judgments, even if they are normatively irrevelant.

To explore this mechanism, we build on Study 1 where images are characterized by
G (content) and T (color). We now let images vary also in a third attribute, specifically
font size, T

0 2 {small, lar ge}. The database for all participants is now:

All orange numbers are large and all blue numbers are small, while all words are
blue and large.

We then run two treatments that vary only in the questions asked. In the Color treat-
ment, we ask “What is the likely color of a randomly drawn number?” (Q1) and “What
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Table 2: Database in Study 3

10 orange, large numbers
15 blue, small numbers

25 blue, large words

is the probability of a randomly drawn number being orange?” (Q2). In the Size treat-
ment, we instead ask “What is the likely font size of a randomly drawn number?" and
“What is the probability of a randomly drawn number being large?”.

The point of this experiment is that the similarity of the data d = number to a given
color, say orange, is different from the similarity of the same data d to the corresponding
size, namely large. This implies that asking subjects to assess color will produce different
judgments than asking them to assess size, even though the two tasks are normatively
identical.⁸ The model yields the following prediction.

Prediction 4. If � > 0, the share of recalled orange/large numbers and the assessment
of the probability that a random number is orange/large is higher in the color treatment
than in the size treatment. If �= 0 there is no treatment effect.

In the color treatment, contextual interference inhibits the recall of blue numbers due
to the presence of blue words. In the size treatment, contextual interference inhibits the
recall of large numbers due to the presence of large words. But because large numbers
are orange, the size treatment inhibits the recall of orange numbers and their assessed
likelihood relative to the color treatment. This effect of course only arises if �> 0.

2.3 Discussion

Our model makes three distinctive predictions relative to the existing models of biased
probabilistic assessments, and our experimental design allows us to test them.

First, our approach is based on selective recall. We measure recall directly in our
experiment in Q3 and Q4. Some alternative approaches do not rely on basic cognitive
functions, such as memory. Rather, they assume specific distortions without exploring
their cognitive basis. For instance some papers assume that subjects compute P(h|d) us-
ing P(d|h) (Gigerenzer and Hoffrage 1995, Kahneman and Frederick 2002, Villejoubert

⁸Because in this experiment the distribution of images seen during the viewing stage is identical across
treatments, there is no reason for a participant in one treatment to attend to or encode images differently
from a participant in another treatment. This helps rule out the possibility that differential attention
during encoding is driving our results. Although a precise distinction between selective encoding and
selective recall is beyond the scope of this paper, it is useful to distinguish a process in which the instability
of probabilistic assessments arises from the selectivity of retrieval from the memory database, rather than
from a permanent distortion of the memory database itself, because of inattention at the encoding stage.
In the current experiment, the first mechanism seems to be driving the results.
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and Mandel 2002, Koehler et al. 2003, for a review see Nilsson et al. 2005), or that rep-
resentative types provide strong confirmation of hypotheses (Tentori, Crupi, and Russo
2013). These distortions are tailored to specific inference problems, and lead to inaccu-
rate predictions in many settings, including in our experiment.⁹ Busemeyer et al. (2011)
offer a quantum probability model in which conjunction and disjunction fallacies can
arise as an initial belief state is sequentially projected into different events. Our model
offers a more primitive mechanism, in which beliefs are constructed by recalling exem-
plars from memory.

Second, relative to other models emphasizing memory limitations, our approach
makes the distinctive "kernel of truth" prediction, whereby recall and assessments are
context-dependent and exaggerate true correlations in the data (e.g, the association be-
tween the cue “number” and the type “orange”). This prediction is absent from other
memory-based models. In sampling models (Sanborn and Chater 2016), subjects ran-
domly sample the memory database, so the decoy distribution should not affect beliefs
because it does not distort the sampling of numbers. Because in the Minerva DM model
(Dougherty et al. 1999) retrieval is noisy, it generates imprecision but not systematic dis-
tortions depending on the decoy distribution.¹⁰ The same is true of exemplar models like
PROBEX (Juslin and Persson 2002). In these models, subjects cued by “number” retrieve
exemplars of different colors on the basis of a Euclidean similarity function that does
not depend on the decoy distribution. As a consequence, these models cannot deliver
Predictions 1, 3 and 4.

Evidence in line with Prediction 4 would offer particularly striking support to the role
of contextual interference, which gives rise to the kernel of truth. Since in Study 3 size
and color are perfectly correlated within the group of numbers, the cue should play no

⁹One intuition behind these models is that the inverse conditional P(number|orange) is more ac-
cessible to decision makers than the target one P(orange|number) (Kahneman and Frederick 2002).
This might be the case when experimental subjects are given the former and are asked to estimate
the latter, as in inference problems. This is less so in the general case where subjects retrieve a distri-
bution from memory, where this approach leads to problems. For example, in the relative likelihood
model of Villeboeuf and Mandel (2002) the assessed probability of orange numbers is over 50% as long
as P(number|orange) > P(number|blue), even as the true share P(orange|number) goes to zero. A
smoother formulation of the inverse conditional is a mechanical neglect of base rates, whereby the odds

ratio P(orange|number)
P(blue|number) is assessed as P(number|orange)

P(n|b)
Ä

P(orange)
P(blue)

ä�
, with � < 1 (Bayes’ rule corresponds to

� = 1). This formulation predicts that if a prior is sufficiently strong, say P(orange|number) is high,
then a signal that supports the prior (i.e. that the number is in fact orange) reduces the posterior proba-
bility assigned to that type. While our experiments do not cover this particular point, existing evidence
generally indicates that individuals update their beliefs in the direction of their signals.

¹⁰Dougherty et al. (1999) argue that their model can also account for some manifestations of the
representativeness heuristic. However, these effects are obtained by changing the model’s formulation in
ways that are unrelated with its core assumptions (namely, the authors assume that, when cued with data
d and asked to assess hypothesis h, subjects spontaneously self-cue the hypothesis h and effectively assess
p(d|h), because the latter is assumed to be more accessible). Our model yields representativeness as a
special case of a general process.
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role for Bayesian subjects, nor should it play a role in sampling models (where numbers
are correctly represented on average), in exemplar models (where large numbers and
orange numbers are equally similar to the average number), or in prototype models
(where the prototype is the most likely number, which is always blue).

Finally, our approach to similarity is based on experienced statistical associations
between items in memory. This occurs without the need of biases in social information
transmission that emphasize stereotypical traits such as in Bhatia’s (2017) model of
semantic associations. Our experiment rules out the role of such semantic associations
by focusing on abstract objects.

3 Representativeness and Selective Recall

3.1 Study 1: Baseline Experiment

In Study 1 we compare probabilistic assessments in the blue treatment (10 orange num-
bers, 15 blue numbers, 25 blue words) and the gra y treatment (10 orange numbers,
15 blue numbers, 25 gray shapes), as in Table 1.¹¹ According to Prediction 1, retrieval
of blue numbers is interfered with in the blue treatment so that participants inflate the
frequency of orange numbers relative to the gra y treatment, eP(o|n)

blue
> eP(o|n)

gra y
.

Mapping Prediction 1 to our output measures, we test whether participants in the blue

treatment: i) are more likely to choose orange as the likely color, ii) assign a higher prob-
ability to orange numbers, and iii) report a higher share of orange numbers compared
to participants in the gra y treatment, computed from answers to Q3 and Q4.

The results are summarized in Figure 1 and Table 3 and show strong support for
Prediction 1. Column (1) in Table 3 reports an OLS regression of a response dummy
(1 if “orange is likely”) on a treatment dummy (1 if blue) and a location dummy (1 if
Milan), that amounts to comparing the average share of participants who said orange
is likely in the gra y treatment versus the blue treatment. As shown in Figure 1, that
share increases 21.1pp from the gra y treatment to the blue treatment (31.1% to 52.2%,
significant at 1% level).¹² Column (2) shows the median probability of orange numbers
is significantly higher in the blue treatment than in the gra y treatment (significant at
the 1% level).

Columns (3) and (4) show how the median quantity of recalled orange and blue
numbers depends on the treatment.¹³ Responses in the gra y treatment are quite ac-

¹¹This Study was conducted in the laboratory in Spring of 2018, in two waves with N = 427 (University
of Cologne) and N = 363 (Bocconi University) respectively. Here we present the aggregated results. We
report the procedural details and disaggregated results (Tables B.2 and B.3) in Appendix B.1.

¹²Nonlinear Logit regressions yield similar results, Table B.1 in Appendix B.1.
¹³We report median, rather than mean, responses to the amount of numbers recalled because they are
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Figure 1: Share of participants who believe that the likely color of a randomly-drawn number is orange
for the blue and gra y treatments of Study 1.

curate, as indicated by the constant term. In the blue treatment, participants retrieve
fewer blue numbers, consistent with interference from blue words.

We next compare how data on recall (Q3 and Q4) matches assessments of likelihood
(Q1 and Q2). First, we report in Column (5) the results of an OLS regression of a re-
sponse dummy that takes value 1 if the participant reported more orange numbers in
Q3 than blue numbers in Q4, which is an alternative measure of each participants’ belief
about the likely color. Consistent with Column (1), there is a significant increase in the
share of participants who recalled more orange than blue numbers in the blue treatment
(25.8% vs 42.4%). The treatment dummy coefficients are close in Columns (1) and (5).
In fact, answers to Q1, Q3 and Q4 are consistent (in the sense of answering “orange” in
Q1 if and only if more orange numbers are recalled in Q3 than blue numbers in Q4) for
87.3% of participants.

Finally, we compute the ratio of orange numbers to total numbers recalled, which
is an alternative measure of the (recalled) probability of orange numbers. Column (6)
shows that, as predicted by the model, participants recalled on average a significantly
higher share of orange numbers in the blue treatment (50% versus 44.4%). Again, the
coefficients are close in Columns (2) and (6). In fact, the stated probability of orange
numbers explains about 75% of the variability in the share of recalled orange numbers
across individuals (see Column (1) of Table B.11 in Appendix B.3.1).

The results point to systematic distortions in the retrieval of information, leading to
distorted beliefs in the direction predicted by the model of representativeness in Equa-
tion (3). The treatment effect represents a jump of over 50% in the frequency of assessing

by construction less noisy. However, similar results hold for means, see Table B.1 in Appendix B.1.
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Table 3: Regression estimates of treatment effects in Study 1 (lab with distraction)

OLS: 0.5-Q-Reg: 0.5-Q-Reg 0.5-Q-Reg OLS: 0.5-Q-Reg:
Y=1 Y= Y= Y= Y=1 Y=

if “orange Probability that a Orange Blue if more Share of orange
is more randomly-drawn numbers numbers orange numbers to total numbers
likely” number is orange recalled recalled recalled recalled

(1) (2) (3) (4) (5) (6)

1 if blue .2111*** .07*** 0 � 2*** .1667*** .0556***
(.0342) (.0137) (.6078) (.5878) (.0329) (.0124)

Location dummy yes yes yes yes yes yes

Constant .3113*** .43*** 12*** 15*** .2576*** .4444***
(.0284) (.0144) (.5046) (.4880) (.0273) (.0114)

Observations 790 790 790 790 790 790
Adj./Ps. R

2 0.04 0.03 0.02 0.01 0.03 0.02

Notes: This table presents estimates of the treatment effect on several outcome measures relating to our
model predictions in Study 1 with distraction. Columns (1) and (5) present OLS regression of response
dummies (1 if “orange is likely” in Column (1) and 1 if “recalled more orange than blue numbers” in
Column (5)) on a treatment dummy (1 if blue). Columns (2), (3), (4) and (6) present 0.5-quantile
regressions of subjects’ stated probability that a random number is orange, number of recalled orange
numbers, number of recalled blue numbers and share of recalled orange numbers, respectively, on the
treatment dummy. In all regressions, a location dummy is included. Standard errors are in parentheses.
⇤ p<0.1, ⇤⇤ p<0.05, ⇤⇤⇤ p<0.01.

orange as the likely color (Columns 1 and 5), and a 13 to 16% increase in the estimate
of the probability of a randomly drawn number being orange (Columns 2 and 6), so
it is large both in absolute and in relative terms.¹⁴ This suggests that interference can
account for why unlikely traits are accessible after specific cues, offering an explanation
for some effects attributed to the representativeness heuristic (KT 1972). In particular,
such distortions predictably arise in an environment of purely abstract objects with no
pre-existing associations in memory.¹⁵,¹⁶

¹⁴The same experiment was also rerun in the lab and on MTurk without including question Q2 on the
probability that a randomly drawn number is orange. The results are strikingly similar: the treatment
effect represents a jump in the frequency of assessing orange as the likely color from 29% to 58% (lab)
and 41% to 54% (MTurk), and an increase in the estimate of the share of orange numbers recalled from
45% to 48% (lab) and 47% to 50% (MTurk). See Tables B.4, B.5, B.6, and B.7 in Appendix B.1.1.

¹⁵Onemay ask whether the particular colors chosen impact our results. Research in psychology starting
with Goldstein (1942) and Stone and English (1998) proposes that warmer colors, such as red and yellow,
may induce outward focusing, while cooler colors may induce inward focusing (reservation), in part due
to their different wavelengths. Elliot et al (2007) propose a more general framework in which the impact
of specific colors varies by context and is a function of learned associations. It is unlikely that any pre-
existing association between orange and numbers drives our results, particularly the across-treatment
differences in the experiments where orange is not representative of numbers (see Study 2 and 3). We
also ran a separate experiment, reported in Appendix C.3, that replaced color with font size as the types
(i.e. the random variable T), and the results are unchanged (see Table C.5).

¹⁶A clear feature of the data is that the frequency of the “orange is likely” mistake is significant, around
35%, even in the gray treatments where our model predicts low distortions from representativeness. As
we show when calibrating the model in Section 5, this distortions pins down the model parameter ↵,
which creates probabilistic distortions even in the absence of contextual interference from a decoy group.
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3.2 Study 2: Varying Relative Likelihood

We next test whether, in line with Prediction 3, probabilistic assessments about the color
distribution of numbers change as the frequency of orange words increases and interfer-
ence for recall of orange numbers intensifies. As before, the target group is 25 Numbers
(10 orange and 15 blue). For the decoy group, we create six variants of the words dis-
tribution in the blue treatment, denoted blue

k
, which are characterized by replacing k

blue words with orange words. We conducted Study 2 on MTurk with N = 1,738 and
k = 0,1, 3,6, 10,22 and in the laboratory with N = 254 and k = 1,6. Here we present
the disaggregated results and discuss procedural details in Appendix B.2.
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Figure 2: Share of participants who believe that the color of a randomly-drawn number is most likely
orange for the blue treatments with k = 0,1, 3,6, 10,22.
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As Figure 2 shows, the results are consistent with our predictions. For MTurk exper-
iments (top panel), the share of participants who answered “orange is likely” decreases
from 54.1% from the baseline treatment with k = 0 to 31% in the variant with most
orange words, k = 22. The figure suggests a decline between k = 0 and k > 0 that be-
comes particularly strong from k = 10 to k = 22. The decline is statistically significant
at the 5% level between k = 0 and k � 6 and at the 1% level between k  10 and
k = 22.¹⁷

Similar results hold in laboratory experiments, shown on the lower panel. Increasing
the number of orange words from 1 to 6 reduces the share of participants stating that
“orange is likely” by 21.2pp (significant at the 5% level). This again points to a general
trend, as can be seen by comparing these findings with the results from Study 1.¹⁸

Table 4 summarizes the pattern described above for the experiments run in the lab.
Column (1) reports an OLS regression of a response dummy (1 if “orange is likely”) on
the actual amount of orange words participants are exposed to. The significant negative
coefficient implies that the share of participants who believed that “orange is likely”
decreases by 2.7pp per orange word added. Similarly, the median assessed likelihood
of orange numbers drop by 2pp per orange word added (Column 2). Turning to data
on recall, the share of participants who recalled seeing more orange numbers as well as
the share of orange to total numbers recalled declines in the amount of orange words,
Column (5) and Column(6), respectively.¹⁹

Again, results obtained on MTurk are quantitatively very similar. The share of par-
ticipants who say “orange is likely” drops by 1pp per orange word added. Turning to
data on recall, as orange words are added, participants recall more blue numbers and
are less likely to recall seeing more orange numbers (see Table B.10 in Appendix B.2).

Study 2 provides evidence that the relative frequency of types shapes the magnitude
of belief distortions. In line with Prediction 3, as the number of orange words increases,
participants are less likely to recall a randomly-drawn number as orange, despite the

¹⁷Increasing the number of orange words from 0 to 1, 3, 6, 10, and 22 reduces the share of MTurk
participants stating that “orange is likely” by 5.3pp, 7.4pp, 7.0pp, 8.4pp, and 23.1pp, respectively. While
the difference between 0 orange words and 1 orange words is not statistically significant, the remaining
ones are at least marginally significant when compared to the bluek=0 treatment, with respective OLS
p-values of 0.070, 0.085, 0.037, and < 0.001. Pair-wise differences in the assessed probability that a
randomly selected number is more likely to be orange comparing across only those treatments with 1, 3,
6, and 10 orange words are not large and not statistically significant from zero. However, the assessed
probability that a random number is more likely to be orange is greater in the treatments with 1, 3, 6, or
10 orange words than in the treatment with 22 orange words. Pair-wise tests yield OLS p-values below
0.001 in each of these cases.

¹⁸Study 1’s blue treatment is equivalent to k = 0. The gra y treatment is not directly comparable, but
to the extent that no number color is particularly representative in that treatment it is similar to k = 10.

¹⁹Table 4 shows no effect on the median number of recalled blue or orange numbers from the addition
of five orange words. Some evidence suggests that this is due to power limitation of this exercise: i) there
is a significant negative effect on the mean (see Appendix B.2), and ii) there is also a significant effect in
the median in the MTurk experiment, where a larger range of orange words was introduced.
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Table 4: Regression estimates of treatment effects in Study 2 (lab only)

OLS: 0.5-Q-Reg: 0.5-Q-Reg: 0.5-Q-Reg: OLS: 0.5-Q-Reg:
Y=1 Y= Y= Y= Y= 1 Y=

if “orange Probability Orange Blue if more Share of
is likely” that a ran- numbers numbers orange orange to

dom number recalled recalled numbers total num-
is orange recalled bers recalled

(1) (2) (3) (4) (5) (6)

k (number of �.0268** �.02*** 0 0 �.0164 �.0123**
orange words) (.0125) (.0071) (.1466) (.2108) (.0121) (.0062)

Constant .5268*** .5200*** 10*** 15*** .4107*** .4738***
(.0506) (.0288) (.4867) (.5943) (.0491) (.0251)

Observations 254 254 254 254 254 254
Adj./Ps. R

2 0.02 0.02 0.00 0.00 0.01 0.01

Notes: This table presents estimates of the treatment effect on several outcome measures relating to our
model predictions in Study 2. We report on our results from the lab here, because we elicited participants’
expected probability that a random number is orange not via MTurk. Columns (1) and (5) present OLS
regression of response dummies (1 if “orange is likely” in Column (1) and 1 if “recalled more orange
than blue numbers” in Column (3)) on k, the number of orange words. Columns (2), (3), (4) and (6)
present 0.5-quantile regressions of subjects’ stated probability that a random number is orange, number
of recalled orange numbers, number of recalled blue numbers and share of recalled oranges numbers,
respectively, on k = 6. ⇤ p<0.1, ⇤⇤ p<0.05, ⇤⇤⇤ p<0.01.

fact that the number of orange numbers is held constant across these variants.
Studies 1 and 2 include waves of our experiment in the Lab with 1044 participants

(further robustness runs described in Appendix B.1.1 raise these figures to 8 waves of
our experiment and a total of 4706 participants). The evidence supports our predictions
consistently across all waves of our experiment.

4 Study 3: Modulating Recall through Cues

In the final experiment, we attempt to better isolate the role of similarity-based recall in
driving our results by testing Prediction 4: cueing assessments of a target group along
different dimensions can trigger different patterns of interference across groups and
generate different probabilistic assessments.

We implement the distribution of images described in Table 2, where all blue num-
bers are small while all other items (orange numbers and blue words) are large. Ac-
cording to Prediction 4, assessment of a number’s size entails interference with recall of
large (and orange) numbers, while assessment of a number’s color entails as before in-
terference with recall of blue (and small) numbers. As a result, the estimated likelihood
of large, orange numbers is larger in the second case.
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The results support this prediction. Participants assess “orange is likely” in the Color
Cue treatment significantly more often than “large is likely” in the Size Cue treatment
(40% versus 17%, significant at the 1% level). Column (1) of Table 5 shows the result
of regressing a question-response dummy (equal 1 if “orange is likely” in Color Cue or
“large is likely” in Size Cue) on a treatment dummy (equal 1 if Color Cue, equal 0 if Size
Cue), while controlling for when the treatments were conducted.

Table 5: Regression estimates of treatment effects in Study 3

OLS: OLS: 0.5-Q-Reg: 0.5-Q-Reg:
Y=1 Y= 1 Y= Y=

if “orange if more Share of orange Probability that a
OR large orange OR large OR large randomly-drawn
is likely” numbers to total numbers number is orange

recalled recalled OR large

(1) (2) (3) (4)

1 if color cue .2296*** .1168*** .04** .05**
(.0343) (.0341) (.0178) (.0218)

Wave dummy yes yes yes yes

Constant .1808*** .1953*** .41*** .35***
(.0293) (.0291) (.0152) (.0186)

Observations 647 647 647 647
Adj./Ps. R

2 0.06 0.02 0.01 0.01

Notes: This table presents estimates of the treatment effect on several outcome measures relating to our
model predictions. Columns (1) and (2) present an OLS regression of response dummies (1 if “orange is
likely” in treatment color cue and 1 if “large is more likely” in treatment font size cue for Column (1) and
1 if “more orange numbers are recalled than blue numbers” in treatment color cue and 1 if “more large
numbers are recalled than small numbers” in treatment font size cue for Column (2)) on a treatment
dummy. Columns (3) and (4) present 0.5-quantile regressions of subjects’ share of recalled orange (treat-
ment color cue) OR large (treatment f ont size cue) numbers over total recalled numbers and stated
probability that a random number is orange (treatment color cue) OR large (treatment f ont size cue),
respectively, on the treatment dummy. In all regressions, a wave dummy is included. Standard errors are
in parentheses. ⇤ p<0.1, ⇤⇤ p<0.05, ⇤⇤⇤ p<0.01.

As in Tables 3 and 4, we use participants’ estimates of how many images of each
type they saw to address more directly their retrieval of numbers. First, we compare
the share of participants who recalled seeing more orange than blue numbers in Color
Cue with the share of participants who recalled seeing more large than small numbers
in Size Cue. We find, analogously to our main result, that a significantly greater share
of participants recalled more orange than blue numbers than more large than small
numbers; see Column (2) of Table 5. Second, we check the average share of recalled large
orange numbers and find, consistent with the account of interference-based distorted
recall, that on average participants recalled a significantly higher share of large orange
numbers under the color cue, see Column (3) of Table 5.
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Finally, we examine the results from direct probability estimates in Q4. When asked
to predict the probability that a randomly-drawn number is orange/large, participants
on average state a significantly higher probability that a random number is orange in
the Color Cue treatment than that a random number is large in the Size Cue treatment;
see Column (2) of Table 5. These findings suggest that participants’ retrieval of blue and
orange numbers from their image database was differentially distorted depending on
whether color or font size was cued in the question stage.

5 Model Calibration and Assessment

The previous sections document that elicited beliefs about a given group, numbers, are
shaped by its comparison to a reference group, in line with the predictions of our model.
In fact, there is significant and systematic variation across treatments in subjects’ average
estimation of the likelihood eP(o|n), ranging from 0.36 to 0.499. To assess how well the
model can explain the observed variation in beliefs, and to quantitatively estimate the
role of interference in the model, we conduct a calibration exercise.

Beliefs about numbers can be summarized in the elicited odds
eP(o|n)
eP(b|n) of orange to blue

numbers. Our calibration is targeted to match this moment as it varies across treatments.
Starting from Equation (3), we obtain:

eP(o|n)
eP(b|n)

= e
S(n,o)�S(n,b).

Assuming, as in Section 2, that � = 0 and using the same logarithmic functional
form f (x) = ln(c + x), the predicted assessed odds of orange numbers are given by:

eP(o|n)
eP(b|n)

=
(c + P(o, n))↵�� ·

Ä
c+P(o,n)

c+P(o,�d)

ä�

(c + P(b, n))↵�� ·
Ä

c+P(b,n)
c+P(b,�d)

ä� (6)

where P(o, n) and P(b, n) are the frequency of orange and blue numbers among all
images shown to participants, while P(o,�d), P(b,�d) are the frequency of orange and
blue decoy images among all images shown to participants.

We next pin down the three parameters ↵, � and c by matching the odds (6) with
the odds computed from the average assessment across subjects of the likelihood of or-
ange numbers. We match three predicted odds to their empirical counterparts in three
different conditions. Table 6 shows the treatments used for calibration and the corre-
sponding empirical target odds. The first two moments come from the blue and gra y

conditions of our baseline Study 1 in the Lab. The third moment comes from Study 2,
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and in particular from the treatment with one orange word (k = 1). Across these three
conditions, in Equation (6) the target distribution of numbers is unchanged, while the
decoy distribution changes.²⁰

Table 6

Study Treatment �d Experimental
Odds

1 (lab) gray shapes 0.78
1 (lab) words k = 0 0.99
2 (lab) words k = 1 0.93

Notes: Target moments.

We invert the resulting system of three Equations (6) using standard numerical meth-
ods, and obtain:

↵⇤ �⇤ c
⇤

0.66 0.07 0.01

Our numerical solution achieves a good fit of the empirical odds (least squared error
of 8.7⇥ 10�4) which suggests that the estimates are very close to the exact solution of
the system. Given the moments in Table 6, parameter � is tightly estimated, as shown
in Figure 3. This indicates an important role for interference across groups in shaping
beliefs: to get a sense of magnitudes, the model suggests that replacing gray shapes with
blue words generates a 7pp increase in the perceived probability of orange numbers,
from 0.43 to 0.50. To assess more formally the significance of the departure from the
null �= 0, we re-estimate � by matching the target moments in Table 6 computed from
a large number of bootstrapped samples with replacement. We find that � is positive
and statistically significant at the 5% level.²¹

Using these estimates, we next examine the model’s performance out of sample in: i)
assessments of likelihood in treatments not targeted by the calibration, ii) assessments
of modal color across Studies 1, 2 and 3, iii) recall of orange and blue numbers across
Studies 1, 2 and 3, and iv) recall of orange and blue numbers in supplementary experi-
ments where the number of decoys is varied.

²⁰The experimental data includes six moments on probabilistic assessments of the probability of orange
numbers, which can be mapped directly to the model. The three chosen target moments come from
the three most basic experiments. We then use the remaining moments for out-of-sample tests of model
performance.

²¹Details of this exercise are in Appendix D. We do not re-estimate parameter c because it has little
influence in the results other than moderating the effect of representativeness of orange numbers when
there are no orange words, P(o|w) = 0. We know that the best-fitting c is positive because the assessed
probability of orange numbers is bounded below 1.
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Figure 3: Model fit. For each value of � in the x-axis, we compute the least square error over parameters

↵, c, namely LSE(�) = min↵,c
P

i

Ä
P̃(o|n)i
P̃(b|n)i

� bP(o|n)ibP(b|n)i
ä2

where i indexes the three target moments in Table

6 and bP(o|n)i/bP(b|n)i are the target empirical moments. LSE(�) attains a minimum at �⇤ = 0.07. The
Figure plots the ratio ln LSE(�)

LSE(�⇤) as a function of �. See Appendix D for details.

We start by computing the model’s predictions for assessments eP(o|n) in the re-
maining experiments where we elicited likelihood assessments, namely in Lab Study
2, g = words(k = 6) and in Lab Study 3, both the size and color treatments. Figure 4
shows the results (blue dots), as well as the fit with the target moments (blue circles).
To facilitate the assessment of model performance, Figure 4 also shows the predictions
of the calibrated model where interference is shut down (� = 0, dotted line) as well as
the 45° line that would obtain if the model would perfectly match the evidence. The
calibrated model reproduces the large observed variation in the assessed probability of
orange numbers, and matches fairly well the out of sample moments, in particular the
impact of the size cue which leads to a large drop in eP(o|n) to a value much lower than
in the target treatments. The calibrated model thus significantly outperforms models
that lack contextual interference, � = 0, which would predict no variation in eP(o|n)
(the horizontal dotted line).

In Appendix D, we quantify the significance of these results against a benchmark in
which participants form beliefs withmean-zero noise. For each experiment, we proxy the
noise distribution with the empirical de-meaned distribution of answers. Using bootstrap-
ping methods, we place confidence intervals on the Bayesian benchmark (P(o|n) = 0.4)
as well as on our observations, showing that the latter depart significantly from the for-
mer. We also place confidence intervals on the model predictions. Overall, this analysis
strenghtens the case for contextual interference, �> 0, in driving the results.

We next consider subjects’ assessments of which color is modal, which are closely
related to likelihood assessments. In every experiment, some subjects say orange and
some say blue, reflecting disagreement that is also observed in their assessments of likeli-
hood. To assess model performance in this context, it is not sufficient to use the average
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Figure 4: Model performance I: assessments of likelihood, data bP(o|n) vs model predictions eP(o|n). The
graph also plots the 45° line, as well as the prediction of the calibrated model where contextual interfer-
ence is shut down, �= 0.

assessed probability of orange numbers (which is weakly below 0.5 in every experi-
ment). For the purpose of obtaining a distribution of assessments across subjects, we
assume that they sample numbers from memory from a binomial distribution of colors
with a probability of orange given by the model predicted likelihood eP(o|n). Specifi-
cally, we assume they sample N = 25 numbers, which is the true number of numbers
and also coincides with the modal number of numbers recalled. Naturally, averaging
the likelihood of orange numbers across subjects again yields eP(o|n). But this process
also yields a share of subjects that state that orange is the modal color, which is given by
1�cd f (N/2, N , eP(o|n)), where cd f stands for the cumulative density function of the bi-
nomial distribution.²² Figure 5 plots the resulting predicted shares against the empirical
shares for our studies, which were obtained both in the Lab and on Mturk.²³

Again, the model captures quantitatively the large variation in the share of subjects
reporting that orange is the modal color, which varies by a factor of nearly three (from
0.18 to 0.52) – a pattern that is absent in models that lack contextual interference (hor-
izontal dotted line). The model tends to underpredict this share, particularly relative to
the MTurk data, which may be due to the fact that with binomial sampling mistakes
about the mode become very unlikely as eP(o|n) drops below 0.5, which may be too
strict (the assumption that this sampling process is unbiased may not hold in reality,

²²We do not pursue further the analysis of the resulting distribution of likelihood assessments, because
the results rely heavily on the assumed sampling process which is not an integral part of our model.

²³Recall that Lab runs of Study 2 included treatments k = 1,6 while MTurk runs included treatments
k = 1,3, 6,10, 22. Moreover, Study 3 was only run in the Lab.
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Figure 5: Model performance II: assessments of modal color, data vs model predictions. The graph also
plots the 45° line, as well as the prediction of the calibrated model where contextual interference is shut
down, �= 0.

since thinking about an orange number may cue further retrieval of orange numbers).
We next go back to the data on recall. From each subject’s recalled number of orange

and blue numbers we construct a recalled share of orange numbers.We then compare the
recalled share in each treatment �d, averaged across subjects, to the model’s predicted
probability eP(o|n) in that treatment. Figure 6 shows the results.

The model again matches well the recalled shares, particularly in Studies 1 and 2.
This is perhaps not surprising given that the correlation between recall and assessed
probabilities is very high in these studies (see Table B.11 in Appendix B.3.1). This high
correlation is a non-trivial result consistent with themodel’s predictions that assessments
of probability distributions are shaped by recall of group elements.²⁴

Finally, we also assess the performance of the model relative to Study 1.A, described
in Appendix C.1, which explores a different source of variation in the similarity between
colors and numbers: group size. In this experiment, as before, we keep constant the set
of numbers (15 blue, 10 orange) as well as the color distribution among words (all blue),
but vary the number of words from 5 to 50, 75 and 125. Consider the effect of adding
more blue words. According to the similarity function (2), this: i) reduces the similarity
of any color to numbers, because there numbers are a smaller share of all objects, and ii)

²⁴One outlier is Study 3’s size treatment, where recalled share is much higher than assessed likelihood.
This may be due to the fact that the differential cueing (size vs color) in that experiment was stronger for
the elicitation of likelihood (which occurred first) than for the recall task, in which subjects were asked
to recall numbers both in terms of size and of color.
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Figure 6: Model performance III: recall of orange numbers vs model predicted eP(o|n)g 0 . The graph also
plots the 45° line, as well as the prediction of the calibrated model where contextual interference is shut
down, �= 0.

increases interference with the recall of blue numbers. Thus, adding blue words increases
the (relative) similarity of orange to numbers and the assessed probability eP(o|n). Fig-
ure 7 (green dots) shows that the model’s prediction holds in the data. Moreover, the
calibrated model matches well the quantitative variation in assessed probability of or-
ange numbers as the number of words changes, even though the experiment highlights
a source of variation not used in the calibration.

In Appendix D, we assess the statistical significance of the results in Figures 5, 6 and
7, following the method described for Figure 4 above. We again find that our results are
exceedingly unlikely to arise in a model of unbiased but noisy beliefs.

We conclude this Section with a discussion of the other model parameters. As shown
in Equation (2), a value of ↵ below 1 means that the similarity between a hypothesis and
data does not respond one for one to their overlap: adding more blue numbers does not
make the set of blue objects substantially more similar to the set of numbers. As a con-
sequence, memory-based beliefs underreact to the variation in likelihood of hypotheses
given data, and tilt their odds towards 1. This underreaction leads to an overestimation
of rare types, at the cost of underestimating frequent types. In our experiments, this con-
tributes to an overestimation of orange numbers, which however is small in magnitude
and constant across treatments.

Finally, parameter c captures a baseline probability of any hypothesis coming to
mind. This parameter plays an important role in smoothing the effects of extreme repre-
sentativeness, which arise in the similarity expression (2) when we use the logarithmic
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Figure 7: Model performance IV: recall of orange numbers vs model predicted eP(o|n)g 0 , Study A.1. The
graph also plots the 45° line.

functional form for f ().
In sum, our model of selective memory offers a unified quantitative account of experi-

mental measurements on recall and probability assessements using the new mechanism
of contextual interference.

6 Discussion

This paper explores the link between intuitive thinking, as exemplified by the represen-
tativeness heuristic, and memory. The evidence takes the form of a systematic instability
of probabilistic assessments: numbers are recalled as being more likely to be orange than
blue when presented together with blue words than with orange words. This evidence
shows that the probabilistic assessment of a hypothesis (object is orange) given data
(object is a number) involves selective retrieval of hypotheses from memory, and that
this retrieval is subject to contextual interference from other data. The role of cue-based
recall and of contextual interference is most clearly illustrated by the fact that, keeping
experience constant, probabilistic judgments about given data are dramatically altered
depending on what comparisons are triggered by the cue (Study 3).

The key ingredient is that recall is driven by a similarity metric that reflects the
actual statistical correlation between hypotheses and data. This mechanism yields rep-
resentativeness (GS 2010, BCGS 2016) and reconciles the observed alignment between
assessments of similarity and assessments of probability (Kahneman and Tversky 1983).
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As is common in memory research (Kahana 2012) we take the similarity function as a
primitive, but relative to conventional analyses our findings underscore the promise of
a context-dependent similarity metric – originally motivated by intuitive judgments of
similarity, Tversky (1977) – in accounting for recall and probability judgments.

An important next step is to provide a foundation of our similarity metric in terms of
memory associations. One promising avenue is to describemental activation and recall in
terms of a bidirectional associative network, as in the Co3 model (Spellman et al. 1993),
which has been shown to capture some elements of Tversky’s similarity metric (Bhatia
2016) but also constitutes the basis of Howard and Kahana’s (2002) temporal context
model of memory retrieval. Such a foundation may help unify representativeness, re-
cency and temporal contiguity effects, and in particular allow for a richer analysis of
experiments like ours in which subjects see the images in different orders, which should
also influence recall and probability judgments.

As described in the Introduction, the patterns of interference uncovered by our ex-
periment seem to be at the heart of many examples of base-rate neglect, as well as
the conjunction fallacy (Gennaioli Shleifer 2010).²⁵ Interference is also consistent with
the Cognitive Psychology approach to stereotypes, as described by Hilton and Hippel
(1996): “stereotypes are selective [...] in that they are localized around group features
that are the most distinctive, that provide the greatest differentiation between groups.”
Here again, contextual interference seems essential.

Some stereotypical beliefs can be amplified by exposure to biased sources of informa-
tion that confirm intuitive beliefs, such as natural language (Bhatia 2017). Such seman-
tic associations may be unavoidable in driving beliefs about groups that are particularly
salient in real world situations. In these cases, we view the two approaches as com-
plementary. Interference in retrieval may help predict which specific features of groups
will form a stereotype. Natural language and rehearsal may disproportionately sample
a group’s representative types, reinforcing the belief originating in selective recall. In
this way, selective recall and semantic similarity are likely to be complementary forces
in creating real world judgments.

Overall, our results suggest that memory shapes the accessibility of thoughts that
drive intuitive thinking about past experiences and can be an important determinant
of probabilistic beliefs (Kahneman 2003). This suggests that other distortions in proba-
bilistic judgment might be understood by integrating other memory mechanisms – not

²⁵Consider the Linda problem: given Linda’s background, a variety of professional outcomes are pos-
sible. Retrieval of the bank teller outcome is dampened because the average bank teller is more strongly
associated with people of different, perhaps less rebellious, backgrounds. Subjects thus underestimate the
probability that Linda is a bank teller for the same reason they may overestimate the probability that she
is a social worker. In comparison to the generic bank teller, the more specific feminist bank teller outcome
is much more representative of Linda, so (between subjects) a higher likelihood is assigned to it.
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only contextual interference – into settings where people form probabilistic assessments
by retrieving information from memory on the basis of cues. For instance, it has been
suggested that anchoring biases might be due to selective retrieval based on similarity
with the anchor (Strack and Mussweiler 1997). Related, it is possible that providing the
inverse conditional probability of data given hypothesis anchors judgment of the proba-
bility of hypothesis given data (as in the taxicab problem) precisely because the former
is very accessible to memory. The availability heuristic, whereby probabilistic judgments
reflect “the ease with instances or occurrences can be brought to mind” (KT 1974, page
1127), explicitly relies on recall. Finally, semantic memory might be at play when mak-
ing probabilistic judgments in non-experiential settings, where the likelihood of an event
may be “judged by the degree to which it reflects the salient features of the process by
which it is generated” (KT 1972, page 431). The notion of memory here may be to re-
trieve specific processes in light of available cues, perhaps along the lines advocated by
Schacter (2007): “a crucial function of memory is to make information available for the
simulation of future events” (p. 659). Extending our framework to incorporate these
issues may provide a unified explanation of judgment biases and intuitive thinking.
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